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Some Nonnegative Trigonometric Polynomials Connected
With a Problem in Probability

Eugene Lukacs® and Otte Szdse?

Let O<lhy< bl . ..
formed from 31, &, . . ., , & with the Byat vow replae
functlon gio) 1= then & sopine pynomial,
queation arcae Az ta when g
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«’h, be integers and ]et.egfﬂll he the Vandermonde determinant

by sind (A2/2) (el , .., nl, The
Io connection with a problem in ?h bability, the
in & nonnegative triconometric polynomial, ig questian iz

atowarad for alx slasets uf sitch trigonemetsie polynomiale.

In & previous paper * we pave a necessary condi-
tion that & polynomial without multipls roots must
satiafy in order that its reciprecal be the Fourier
transform of a8 dJdistribution function. Imposing a
further restrietion on the polynomials it ie easy to
derive the following condition:

The reciprocel of a polynomial whose roots are
all gingle and hme the same ary part is the
F-::iu.ner transform of u distribuiion functmn if and
o

11 The pelynomial has one purely i root
ai (¢ >0} and » pairs of complex roots 4+ &tad
{ﬂ{b:{b!{ . ‘{:b., l‘=1, -2: "t ﬂ‘}'

{2) The determinant
sint b—;: sin E}Eﬂf; cey =sain=%I
b2, - [
=>0forall 2.
b;{ll-”’ b;“t-“,. . ﬁ,E (=1

This condition follows ensily from formula (4.4} of
the referenee cited in fooinote 3. It is therefore
of some interest to study this determinant and to
investigate for what waloes of &, &, . . ., #, it is
a nonnegative function of 4.

in this paper we consider thiz determinant only
for integer values of the &, and ehow that it repre-
sents for certain configurations of the b, & nonnegative
trigopnometric  polynemial. Certain relations for
generalized Vandermonde determinants of odd in-

ure gl=o obinined.

e introduce first  some notatons. Let
0<b <8< . . . <b, ba n integers snd
& oL, B
62, i, .. ., b3
V.= . e . {1
By, Be-v,L.,  Beed

1 Hationsl Burese of Rtondards wed Our Lady of Cladangl) Collrge,

1 Unlmtr'ul' Clncinnati nod Mpllodal Busesd of Staodmcds,
1 E. Lukacy and O, 2xhoy, Critajn Foutor tentfering of gitribBtfng, Canm-
dian 4, histh, 4, 199 to 143 cieei),

- F2 L o R

the generalized Vandermonde determinant forrned
from the numbers 8% &2, . , ., # with the axpnnanta

B4, 02, . .., a1 C]ﬁ&rhr V=
V,_,=0, while T, iz the nrdmaw “Jandarmonde
determinant of the nurnbers 8, . . ., 3, Deoote

further by A. the minor of the element in the firat
i
paER I

row and m-th coloma of ¥y an that 1=
In this paper we study the function

gt 08 cabab o Bed
l'l. 2 ' 2l I.'l 2 7 ' HlN 5
5Y, B,..., b2
gl =2 .. .
SN S R

- V.,+ﬁlc— ™8, co8 buf  (2)

For the discussicn of (8} we need the following

lemmas: .
Lemma ! If b, b, .. ., b are integers, the

detertnanant (2) ean bo fuctored so that

q(#)=(1—cos 8)* A{cos §), (3

whera A{x) is a pelynomial in & of degree b, —n.
Lemmao 2. 1L by, by, . . ., B, are odd integers we
hore

#' (#)=gin & (1 —cos??)" " Blcos ) ={sin )"~ ' B{eoad),
(4)

where () is a polvnomial in & of degree b, —2n+1,

To prove lemma | we differentizte (2) with respect
to # and then sat #=0. This shows that

gH1{0)y=0 for 7=1, 2, . ad inf.
FH0)=0 forj=0, 1,2, ... (r—1) ¥{5)
FF0)=/—1"'V; fork=n, (rn+1),...adinf
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From (fi} we obtfin the expansion of g(#) into A series

9= (10 oo, ®

On the other hand, (2} indicates that g{d) is & cosine

lynomial of degree b, which venishes for ¢=0.
E‘cl':mfore it has the form
g0 =1 —con f)+A{1—cos 8+ . .,

Comparing (6) snd (7) it is seen that gi= 8= ... =
Bu-1=0 go that {1—cos §" iz & factor of y{ﬂ') thls
eatablishes lemma 1.

To prove lemma 2 we asgsume that all the hii=1,

2, ... ,n) oere odd nutnbers. It follows then from
f2} ehat
FHa—H=2V,—gi®), (8)
therafora
g (x—8=g"(8). (#)

From (3) we have

g’ {8)=(1—ecos &) ! sin #nd{cos 8} —
{1 —cos #).4° (cos 8)].

Substituting this intoe (9} we ohiain
{1—cos §)"! gin dfn.Ad{cos §)— {1 —ecos 8} A’ (cos #1]

== (1-}cns §)™! gin fnd{—cos 8)—
{1+ oos )4’ —co= 8)].

Thia shows that nAdfcos 8 — (1—oos #).47{cos ) snd

therefore aleo 97 (8 has the factor (14 eos 817, This
e Tnteodhoe 5.5 fow vaiablo
Z=coa f (107
and write
Plri=glarc cos z) (11}
we have from lemmia 1
Pig)==(1~z}"A(z), (12)
and similarly from lemma 2
Pliz)=—{1—ai"Blx}. {13}

We zubstitute next the expansion {6} into {8) and
sae that

2Vem 33 (— 1 (r-)®

(14)

ﬂ“ =3 (1

z.;-ﬂ

Differentiating (14) and setting #=0 we obtain from
this equation & number of Gions for ralized
Vandermonde determinenis formed of odd integers

.

L

- _ ‘P"* .
e =0T e e =0

for m=1,2,..

- L Ve
2T Vi sy P,

= E_ 1]ﬂ+m.’.!{u+-} Vl-l-!'l

L(2a—1)

- (15}

for m=0,1,2,...adinfl
m . - VI:T
t—::;ni-l( e BE Zn—3m—10
for m=90,1, 2,... adinf.

It the following we discuss several co ations
of the integers b, &;, . . ., &,, which to non-
negative irigonometric pulynommla aley, t.he results
are piven in statementis, labelled (4} {BJ . (.

{A) If the b, are the first n consecutive mt.r:gcra that
is if by=14 for 1.—1, 2, ... n,then the trigonomela'it:
I;"numml g(8) is nonnegative.
grf; From lemms 1 we sce g{ﬂ} -A{l —cos 8",
where A 19 a constant. Hecnc:e A=2"tglx); from {2}

it i seen that g{r}—Vn—Fzﬁﬂ Therefore A0

and consequently {8} nonnegative for all values of #.

(B} If the &, are tho {irat n consecutive odd integers,
that i=, if &;=21—1 for i=1,2, . . ., » then the
trigonometric polynﬂm.lal gid s ngnnegative,

onf: Sinee §,=2n—1 the polynomisl Bz} of
lemme 2 reduces trn & constant B, m {12} we have
Play=—-B{1-—5*' or, In view of P{1}=0,

P[x}:Bfl (1 -t g,
Formulaa (11) and {2) ehow then that P{0Y=g{x2}=

Vq:}ﬂ, hence
J; {(1—B==144

Therefore Plz) =0 for %]El, This completca the
gmo of statement (B) aince the inequalities
() =0 for || £1 and () >0 for all § are equivalent.

(Ch If by=n-+1, that 13 if the numbers b, . . ., b,
are obtained from the fivat consecutive (n-+ 1} integers
by cmitting the integer £ (1 <k <n) then the tmigo-
nometric polynomial g(#) is nonnegative if and only
if 28> (n+t1).

quf In this easa P{x) has degree {n+1} so that
mrdlng to lemma 1 A(zx) is & lincar function.

Afg)=uetde. (16}
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The substitution (10) transforms coe &8 into TH{2)
where Ti{x) is the k-th Tchebicheff polynomial of
the firat kind. Formulas (2}, (3) and {16} show that

P@)=(L—#"a4ba) = Vot 23 (= D"8aTs_@). (17)

Thea coefficients @ and & of A(z) can be determined
from {17}, after some elementary compuiationsz it is
seon that

k
?E:_—I; ;;' i_ HI {18

In the interval [2{<]1 the functions A{z) and P(x)=—
{1 —z" A{z) have the same sign so that it 13 suflicient
to determine when Afx) is nonnegative in ]z|<1.
Frowm {18} it 1z =een that A{z) >01n ﬁ L if and oniy
fanint+ 1482410222, that 15 1f 22 >n+ 1.

(D} If the b, (i=1,2, . . ., u) are all odd numbers
and if 5, =2r+1 3 that B, by, . &, e obitained
from the first fr4-1) odd integ

Al =0%A, [x+

ara !b;lr omitting the
k-th edd inteper 2k —1 {1 £k <n), than the trigeno-
metrie polynomial (]ﬂ] 18 nonnegative if either one
or the ather of the ?u lowing eanditions is satisfied

k2 (14T 20) &

k<7 (14T T20), (i)

Bt

A-=2k{k=—1)
S D—F&=1)] =~

where z, i= the root of the equation

f (1 —89" (B — z9dt—0 (19)

which falls into the interval {0, 1}.

If neither (i) nor (ii) is satisfiad, then the function
g} assumea aleo nepative values. Moreover it is
po=sibla (o simplify (1) {or lavge n by proving the
Joroliary to statement (I,

If for large » and k<1 4+ T+ 2%)/2 alse

¢ (n+%—) —2h(k— 1)]

then (@) is nonnsegative; if on tha othar hand

(n+%) n—2k(—1)
St D —kE—1 "

thep there are int % and & for which g{#) aspumes
poditive and negative values.

| seeond

*
To prove statement (I}) we need the following
lemrms

Lemma 3, Lel
P,{x}:fltl—fﬁ"’ti'dt for g==0, 1 {20}

and ’
Qix, Y= Py{a)—"Polz). (21)

The polynomial {z, {7 is nonnegative in the interval
1<% <1if and only if

[ {2

Hera 2, 13 tha root of the equation
Riz)=Q(—z,2)= r_' (1l —" - — 2B di=0, (23)

which falls into the intereel (0, 1),

Then lim t,= s exiais wnd iz the root of the equation
—am
1
F{p}zﬁ@-- p*)-— 203 f (1—the—rdi=0, (24}
a
which is located in the interval (0,@-

Some values of 2, a8 well a3 p were computed.
Tha proof of this lemma is rather lengthy. In
order to avoid interrupting the discuesion of the
various nonnegative trigonometric polynomials, this
proof will be given in the last saction of this paper.

Wa proeeed aow Lo the proof of statenment (D).

According to lemma 2 2(z} i= & polynomial of the

e, Since the &, are all odd numbers
P'ix) and Bix) are even functione of x so that one
obtaine from {13) and (2}

P*{x}=—(1—xﬁ--1{a+cz°}=mi_1(— 1)"4,, T (2.

This relation permits us to determine @ ond ¢, snd &
is sean that

Pl =
E“j erfa =2kt —1)

If we use for brevity the notation

=220 +1}4, (25)
and -

- 2 o n—2kk—1) _
2wt L —Fk— 1)

{26)

141




we h?lve
Pig)=—y(1— 2 Wzt — {3y
Piﬂ=vf(l—ﬁ'-1{t*— :E..}dz}' 27

If (i) is satisfied wa see that 12 . <0, so that from (27)
P{2)<0 for j¢|<1. In this case P(x} is non-
inereasing in the mterval — Lz <41, sinee P{1}=10
thizs means P{x) =0 for |z|<1 so0 thet alag g(f)>0,
Wa assume next that i} is satisfied, then {% . >=10.
Singe ¢7>0 snd P{zi=~y{{z, {,:), wesee that state-
ment follows immediately from lemma 3.
{E) If tha numhers &, ..., &, are ochtained from
the first conzeentive (4 2) mtegers by omitting the
two in F and p where 1<k<p—1<n, then
F(#) is nonnegative if snd only if a certain polynemial
;-:;l'[{::] of the second degree is nonnegative for |2/ <1,
ora

QUr)=4r +4n—L(n, &, pll+230°+@m—2)—

AnLin, k, p)+Nin, k, ), (28)
where
_e+ 2 [r 1Y -4 [t 15 —p)
Mok D= =T |

(m+2) (2n+ 3) (0F— &7 (n*— p7)
[(n+2)*—k# in + 2" — ]

Nin bk, pr=

Progf: In thie case §,=wn42, =0 that according to
lemma 1 A(z) is 8 polynomial of the second degree,

Alz)=ex*4bxr+e. From (12), (2) and{3) we have
Plri={l—x"(az*+ bxr+c)
= Vot 20— 1) 8a Ty @), (30)

From this relation wa can determine the coeflicients [

a, b, and ¢, A somewhat tedions elementary
computation shows that

Azy={(ar--bate)=2""14,0{z).

Thie completes the proof of etatement (E) which
follows immediatcly from (30). ) ]

Certain particular cases can be discussed easily

(a) I k=p—1=unthon N(n,%n,04+1)=Ln,n n+1}
=0 a0 that Qiz)=42+4net+2n?n—2. The dis-
crimimant of §x) is them —16{r—1){»n+2) and is
negative for a™>1. ‘Therefore, §fe) =0 for all 7 =0
thet g{f) must be monnegative.

Eib} If k<n while p={n+1} then Lin, k a{ 1}=0
N

_n+2)(2a+1} "=k

Nin, k, n-4+1)= TNy

@{z) and its discriminant can be computed easily -
and it can be shown thet gff) 1= nonnegative if and
only if
(n—1}na-2)
e

{¢) If k=n—1 and p—n then Au,n ~1,ny=0and

in-+27
Lin, n—1, ﬂ}=3(ﬂ-+1:l‘

The discriminant of {(x) ia then

B(nl—fl}‘ (—2r'—5n"+ 70+ 270 +18),

which i3 negative if # >3 g0 that in this cese 4(§) =0,
If n=2, Q(x) has two roats in the interval
—1<2<41 so that g(f) assumes also negative
values

We proceed to discuss & more complicated case
by assuming that the b, b, . . ., &, are chisinad
from the firat {rn+2} odd integers by omitting two
odd integers (24 —1) and {2p —1) where

1zk=p—-1%n (31)
st that d,=2r 4-3.

We zee then feom lemma 2 that B(z) is a poly-
nomisl of degree four. By the procedure employed
in easa {C) it is possible to determine the coefli-
cients of this polynomial.

. Wa ohtain
Pliat=—~(1—a%* ' Blz)= —y {1l —z%*~dz*-az—B) (32)
_ Hern
=220 4 B3, 0,
g2t =20+ B0+ 5} (nt+ Di2r+ 5k (k— 1) +p(p— L]~ 4k —1)p(p—1}}
[+ 23+ 13—k — Dilin+2Mn+ D —plp—1)] (33}

y L= 1@+ 4420+ 1) [k = 1) +-p(p— Dl— 2k — Up(p— 1))

[(rt2)n+1) = kik—l[r+ 20+ L—p{p—1)]

T
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The wigonometric polynomial (¢ is nonnegative if
and an]ga if

P{z}=1f‘ (L =" 140+ ' — B}t 2 0 for all 2] <1.
{34)
The nonnegativity of the polynomial Pix) depends

on the nature of the roots of the polynomisl
Blt}=4w'+ar* —b. This introduces the need to

distinguish & number of ecases. For this purpose
we wTite
Rirl=4ritgr—b=4{r—r){r —r.) where
—g—+/a'+168 _—a.+1,,-'m’+1ﬁ } (35)
T=— S.

We are now in a position to furmulate- atatement (F).
1EFJ If the numbers b, . ., b, are obtained
rom the fist consecutive ﬂ.+2} odd integers by
omitting the two integers 2k -1 and 25 —1 (where
1<k<p—1=n} then the trigonometric polyno-
mial g(#) is nonnegative if and ooly if one of ihe
following four, mytually exclusive, conditions is
uatisfiod

{e) 220 and b<D,

{#) a< 0 and a4+ 165 <0,

{v) a20 wnd O<{d<44a end alwo

Ri(yra) —r-RiiJ'D 20,

(& O0>a>» —4 and ——-{b{a-i—é and also

R:{:Fz} —T1R1(1"'T_2}Eﬂr and if >0
R?(— Ty ‘Tle{—‘h":;}:_”m

Here
R;(z}=J.1 {1—8’}"'?"’“{!‘— 2Ndtfori=1,2, (36}
-t

o0 that B;(z)=RK(z) as gpiven by {23).

Proof: If Rirt=4+"+ar—820 for 0=-<1, then
o= —n{l —oF?" () <0 for —1=z<1. BSince
Pily=0 we =ee tha.t.ﬁ P(ﬂz}gﬂ for —1<a<+1.
Clearly Ai7) =(2 7 +§) —%—&, .t.hemi'ore
Mr) >0 in 07 <1 if and only if a2n
(zf+ ) > +1“’ in0<r<, (35)

If @>0, (38) holds if and only if d<0, but this s
sxactly condition (a).

FCaT )

We next derive the condition for the vahd].ty ol
(37) when a<{0. Clearly '(r)=8r+e, A'(r}=58, so
that Af+) has & minimum &t r=—a/8.

We consider first the case !alfﬁ- —5/8<]1, wa
have then

min b (r)= h( )__

Relation (37} 1a therefore satisfed if —8< a< 0 and
a*+186 <0, Hle|/8>1 we&aethat.h’[rj SEr—11<0
m 0<r=1, so that nI;I]]sl hiry=h{1)=4+a —b.
The function A(r) is nonnegative if e< —8 and
d+a—-b>0. Buto*fleb={c+81*—16(4Fa— b} ior
any ¢, hence if g*+ 166 < G we alwayshaved 4o — =0,
The alternatives discussed for case a<(0 can there-
fore be joined so thet condition (8) is established,
To complete the discussion we must consider the
remaining cases, n

{+"} a>0and §>0,

and

(&) a< 0 and a*4-1657=0.

In case (;f} we gee from (25) that r <0 while =0,
Since P {z) =4y f‘ (1 =871 (= 1)) (& — o), it Fok

lows thet Pfr) <0 if rp>1, that is if Ye*+ 165 >a 48,
but this occurs if and only if §2>4+44a.

Thus P{x) <0 for —1<z<1 if 220 and b=41a,
therefore {7’} reduces to the case

("'} a0 end 0 d<"4+4q.

In this case hoth roots ry and rs are real and
simple coraputation shows that min P(z) —P( —ra),

hence P(x) 20 in 2] <1 if and only if

P~yr=ty [ _Q-tri@—sy@—rdto,
That is if -

a’+lﬁb

L
f_ﬁu-m- e ) Fdl—
1
| e rydezo

ar, written in & more concise notation

By —rB{yrd 20,

=0 that (y) is established.

We ced with the discussion of the last case
and e®*+ 16567>+0 and show first that always
a-+4>=0. From (33) we obtain easily

(4} 2{n+ 1)%n*tn— 1)+ m+ 1) [k(k— 1)+ plp— 1)1 — 2k&( k—lﬁpﬁp—ll

2 [in+2}n+2)~4k(x— D] [r+2} -1} —p(p— 1)] |
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On seeount of (31) thiz fraction hes alweys &
Jitive denominetor so that ita sign is determined Ly
the sign of the rumerator which we denote by
Mir k). Webave then

ME“:":P]':I)(P_‘ 1:' [{ﬂ'+ l}_ﬂ-h:k_ 1}] +
(n+ Lkl — 1)+ 2+ 1)%r*+n—1)

=kik—1)[m+1)—2p(p—1))+
{n+ DpE—1+2n+ 14 n +r—1),

13 =0 then Minkp) =0 If on
=28k —1)<"0 then also
eraiﬂreM(n k.p) decreazes
ot fized k and increasing p as well as for fixad p and
k. Hence M{nk,p) attaios its minimure
and p are as large as possible, that is

If (nd-1) —2k{k—
the other hand 1‘!-—|-'12
'£ﬂ+1}—ﬂp(p—1j{ﬂ h

in¢reasin
value if

MiniprzMnnnt1)
=2{n4+ 1 {r*fn —1) —20*(n+ 1) (n—2)

22nf (410 —28(n+1) R -2)dn2=l.

Therefore M{nkpi=6r'nt+1)7>0 if 221 so that
also g+47>>0. It is therefore no restriction if we
write the case (§) in the form

(3) 0>>a> —4 and a*+ 1680,
We must first consider the case
[} 0>a>>—d4 and § >of4,

Wa have then a?4- 160750 a0 that Alr) has two real
roots; from (35) we see that r<0 while n>1.
Therefore

1
P(x}=4'f‘£ (1 —9* =1 — o NP — il < O

for —1<x51 so that {3;) does not yield nonnegative
triganonmetric polynomials. We finully have to in-
veatigate the possibility that

(5 O>e>—4 u.nd-—i{b-c:4+a-

holds. Again ¢*4-18687>0 and &(r) has two real
ronte m and . If Iollows then from (35) that
1&rman>»—1,

Asgume first thet >0,

By a eimple computation it iz sesn that F{z) has
the two minima--/7, and—4/r; inside the interval
{—1,41). Pi{zi is thereiore ponnagative for
—1{::51 if and only if P{y7)=0 and PFB —72) =0,
According to (34} and (35) this means that

1
L—Om=1yd. gt
[} oo |
-r;f_ﬁ{l-—f’}" 1z}l =0

and

1
— - 2— —
f,,“ YR — r 3 |
r,,f 1.:1 g e Y > 0

or, using the notation of (36}
Biyrg=—rnBiyTa =0
and eimmltaneously Bdf— ) —raB{— 7320,

If ;=0 then there is only one minimum for P(z), -
and therefore only the firet condition remalns.
Thia establizhes condition (8} and completes the
proof of statement (F).
In this section we give
waa atated on page 141.

Pur)—= J' ' =y

and want to determine the conditions which I has
to satisfy in order that the polynomial

roof of letma 3, which
e writa

{#==0,1) {39

Qz. 1) =Pi(x) —§"Pylx} (20)
should be nonnegative for —1<s<-41.
Clearly 0<7 Py(x)< Pylx) for —1 <2< +1. There-

fure f-}'fx,;’{l <0 forf <1 if £21. If for eome valye
.,,|<:1 the function Mz, 5"}}0 for
|a: |Z1 then also Qix,{)=0 for |z]<1 an 75]5’4
To ohtain a criterion for the nonne tr-'lt._-,f of
Oz} in |2/ =1 we have to determine the teat
possible ¢ such that |1 snd Q(x,i)>0 for ]Jﬂ =1.
An elementary computation shows that the fune-
tion (2,¢) has sxactly one minimum m the interval
—1<x<” 41 which i loceted at x=—;
Wea consider next the ercﬁmhun R(z}uQ{—z, 2)=0
or, writteh in greater deta

f_ (1 — 8P4t ot Py — 2)— 2*Pyf— £)=0. 1)

Clan.rIE\: R(0)>>0 while R{1)=P\{—1)—Po{—1)<0 50
that the aguation (41) has at least one root in (0,1).
Moreover

dR 1 -]
E;-—zzf_.u—s*} dt

an thet di/dz venishes in the interval 0 <z<71 only
at the point z2=0, therefore tha equation (41) has
exactly one root 2, in the intecval (0,1).

Since min @z, z0=Rlz =0 we sea that Qx, z.}

=0 in !;f*‘-‘-'.l and therefore Qfz, 120 In |z]=1
if P2,
If however >z, then

Ql:'_zlj r}=P1|:_£n]— r’Pu{—'E,J
===z} Py — 2.0
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w0 that Q(x, ) assumes also nepative values. This
establishes the first part of lemms 3. Wae still have
to discozs the asymptotic behaviour of the solution
of equation (41).

e derive firat & useful inequality. By definition
2s 18 & root of equation (41}, therefore

+1 _ S
j—. {1 —Ey=-LF— 23141 J:l (I

If we set

— "I d 0.

nty (42)

then we sor that

5 J';i (1— et (ti_%) a1 >0
ﬂ, —_—
2

lf (1 =8~ Tt > 0.

or

Jﬂ e 't’dt—
'n-l-

We sea therefore that

P@@)T (%)_ . TE (%)}n

3 1 1% =
v(at3) ntgr(n+z)
80 that
1,
wiSgorsisg e 3)

In order to derive an asymptotic estimate for w,
wa rewrita (41) by dividing the interval of integra-
tion into two parts (—2,0) and (0,1). The integrals
over the second intervel may be Easll_‘]." expressed in
mmﬂ'ald of pamma functions. A simple sompuintion
wialda:

OLLYE o
e (nt )(2n+1 )

1
— ZEJ; {1—z¥Tm=41 — )t

filz }—

If wa writa

Liz)= : (n+%) - (ﬂ+';") Biz)

T'in)

and

1
L= [ a—smra-nd, @)

we Lave
ar {n+ )
1 3
E(z)=g vl —(@nf DTl -— =l (ﬂ-l-z)z'f

mfl the asymptotic formula for fog T'ix) it is seen

( =pX[ [ +a{ﬂ. ‘}]‘—eo{n_'J

(ﬂ-+ )il‘{ﬂ.]
hence
Ll[z}:u [1—(2Zn4 1127 —2eni=0 (n..|-..)n 2T,
{45)
We next transform the integral 7, Let 0<lx<1

then (1—ux)s*<1 and (1—z)"" 1{5“‘ vr therefors

0< k= [{1=—x}e*]" " im~— 1)1 — {1l —z}e7].

Sinee ¢7»14r we hava plan (1 =z)e*>=1=—1% and
1—({1l—xz)e=< x*ac that finally 01 —{1— ;" lgl2—2=
<fa—Llpefor 0 e~ B5 (1 "=l 1139, We
replace hera z by 2% and see that <l {2-nA0—
{12 ' in— 142 for £2%°<71, 8o that

(1= ¥l p— =1 (g = 1) 2% for 23201

with 0<8,<1.

We substitute this into the expression (44} for 1,
anhid ohbain

Eﬁg

1
I,=J; =020 —Pdt—2 12t (46)

for 22<]1 with 0<74,<71.
We have

1 a3
v {3"’ [ & —{:"H"T) P —g—{t—1] =y [1 —g _TFF]

3
Since 0<C1—e T =)

=3 2% with 079 3/2 and hence

’{gz%“we see that (l—e

1
f‘““"“”=e-{"+?}zﬂ;g+vé - (a=1)531 p 43

therefore

J:.g-(n—u:‘:’(l_ﬂ}d_f: J; le—{""—;)*"’(l

-I-% z-t,g—{ﬂ-- n2s

—1%dE

with 0< e<1 and ﬂ{h{%-
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Substituting this into (48} we bave

I,,=J‘] o~ (BFEP G ey
BAZ e oyt 212 Dty

with 0<8,< 1, 0<a<1, ﬂ{h{%-

Wa introduce next & new variable w,—

\/ ﬂ-l-; -]
using (45} snd (47) we see that w, satisfies the
equation

= (-%—wi)'— 22 0t J' " (1 — Nt
1]

=1
n ow? el za,w* n—1)

15ﬂ+% i ( 2)

For each value of 5 this equation has a root w,, b
43) we soe that the set of these ronts is bound
o consider any sccumulation pomnk p of this sei
and a subsequence {w, | of the sequence {w.] such

that Lu.:n s, =p. ¥rom {48) it is seen that ¢ satisfies
the equation

(45)

Fip)= ﬁ(%-p’)-—h"J: e~ (1—dt=0 {49}

traneforming the integral we obtain finally
for p 'iia equation

Fy=vr(5—o')= [ to?—atedz=0  50)

Ta completa the proof of lamma 3 we have only to
show that the sequence |, } converges, We dem-

onstrate this by showing that {«,| has only one
accumulation peint, and this follows if we show that

F{g)=0 hes only one root in (G,»JTE)

Wa ses easily that F{0}=-0 and F(\g){[l B

thut there is st lenst one root in the interval,
From {&0) we see that

Fioy=—2a[ Vet [(edz]

go that F/{p)< 0 for p>0. This shows that F{p) -
hae exactly ona root.

The equation {41) has been evaloated for certain
values of #, similarly the ssymptotic solution p hns
been found from (50). ‘This was done in part &t the
Gam utation L:al:mra.t.ur}r of the National Bureau of

tandards, W. n, I} , and in st tha
umpu tation dspartment of the Institute for Numeri-
cal Anslysis in Los Angeles, Calif. The results are
given in the following t&ble which shows al=o the
valoes of w,.

}
] Y LY

o 48197 . B394
3 32114 . BT
4 . 2B244 LY
b . 265608 . 2814
] 233434 . 39745
) 2178 . F9696
= 20443 . SHE59
1 a . 19348 . 59830
10 . 15395 . J9606
15 15102 L
20 L1B141 . FOE00

F={ 50157

Wasniverox, May 25, 1951
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