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Some Nonnegative Trigonometric Polynomials Connected 
With a Problem in Probability 

Eugene Lukacs1 and Otto Szdsz2 

Let 0<&i<&2< . . . < 6 „ be integers and let g(8) be the Vandermonde determinant 
formed from bl, bl, . . . , bl wi th the first row replaced by sin2 {bid/2) ( t = l , . . . , n). The 
function g(0) is then a cosine polynomial. In connection with a problem in probabili ty, the 
question arose as to when g(6) is a nonnegative tr igonometric polynomial. This question is 
answered for six classes of such tr igonometric polynomials. 

In a previous paper 3 we gave a necessary condi­
tion that a polynomial without multiple roots must 
satisfy in order that its reciprocal be the Fourier 
transform of a distribution function. Imposing a 
further restriction on the polynomials it is easy to 
derive the following condition: 

The reciprocal of a polynomial whose roots are 
all single and have the same imaginary part is the 
Fourier transform of a distribution function if and 
only if 

(1) The polynomial has one purely imaginary root 
ai (a T^O) and n pairs of complex roots ± bk+ai 
( 0 < 6 1 < 6 2 < . . . <bn, *r = l, -2, . . ., n). 

(2) The determinant 
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M 

b2(n- A2(W-1) 
U2 y ! (n-l) 

> 0 for all 0. 

This condition follows easily from formula (4.4) of 
the reference cited in footnote 3. I t is therefore 
of some interest to study this determinant and to 
investigate for what values of bl7 b2, . . ., bn it is 
a nonnegative function of 0. 

In this paper we consider this determinant only 
for integer values of the bt and show that it repre­
sents for certain configurations of the bt a nonnegative 
trigonometric polynomial. Certain relations for 
generalized Vandermonde determinants of odd in­
tegers are also obtained. 

We introduce first some notations. Let 
0<&i<62<C • • • <C&n be n integers and 
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the generalized Vandermonde determinant formed 
from the numbers bl, b\, . . ., b2

n with the exponents 
k, 1, 2, . . ; . , 0 - 1 ) . Clearly Vl = V2= . . . = 
l^_i = 0, while VQ is the ordinary Vandermonde 
determinant of the numbers b\, . . ., b2

n. Denote 
further by Am the minor of the element in the first 

n 

row and m-th column of ^0 so that Vo=^(—l)m~1A„l 

In this paper we study the function 

7W = 1 

g(e)=2 

sin 
&!0 

A2(n-1) 
°1 1 

sin' 
b20 

bl 

J2 (n -1 ) 
u2 j 
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bl 
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= ^ o + Z ) ( - l ) m A m c o s M (2) 

For the discussion of g(d) we need the following 
lemmas: 

Lemma 1. If bu b2, . . ., bn are integers, the 
determinant (2) can be factored so that 

0(0) = (1 —cos 6)n ^4(cos 0), (3) 

where A(x) is a polynomial in x of degree bn—n. 
Lemma 2. If 61, b2, . . ., bn are odd integers we 

have 

^ , (0) - s in0( l -cos 2 0) n - 1 B(cos0) - ( s in0) 2 w - 1 S(cos0) , 
(4) 

where B(x) is a polynomial in x of degree bn—2n+l. 

To prove lemma 1 we differentiate (2) with respect 
to 0 and then set 0—0. This shows that 

^ - 1 ( 0 ) ^ 0 

^ ( 0 ) = 0 

ff
a(0) = ( - l ) * - 1 F t 

for ,7 = 1, 2, . . . ad inf. 

f o r i = 0 , 1, 2, . . . (n-l) 

for k=n, ( n + 1 ) , . . . ad inf. 

K5) 

985694—52- 139 



From (5) we obtain the expansion oig(0) into a series 

^=§(-l)- ( 2 / 0 ! 
02k. (6) 

On the other hand, (2) indicates that g(0) is a cosine 
polynomial of degree bn which vanishes for 0=0 . 
Therefore it has the form 

flr(0)=fc(l-cos«)+A,(l-cos0)s+ 

+& (i-cos ey» (7) 

Comparing (6) and (7) it is seen that /3i= (t2= . . . = 
i8n_i=0 so that (1 —cos 6)n is a factor of g(0); this 
establishes lemma 1. 

To prove lemma 2 we assume that all the bt(i=l, 
2, . . . , n) are odd numbers. I t follows then from 
(2) that 

g(T-e)=2V0-g(0), (8) 
therefore 

g'(*-0)=g'{6). (9) 
From (3) we have 

g'(d) = (l — cos 6)n-1 sin 0[TLA(COS 0) — 

(1 — cos B)A'(cos 0)]. 

Substituting this into (9) we obtain 

(1 —cos 6)n~l sin e[nA(coz 0) — (1 —cos 0)^4/(cos 0)] 

= (l + cos 0)w_1 sin d[nA(—cos 0) — 

(l + cos0).4'(—cos0)]. 

This shows that ??^l(cos 0) — (1 — cos 0)^1'(cos 0) and 
therefore also #'(0) has the factor (1 + cos 0)w-1. This 
completes the proof of lemma 2. 

If we introduce as a new variable 

z=cos 0 (10) 

and write 

P(x)=g(sLvccosx) (11) 

we have from lemma 1 

P(x) = (l-x)nA(x), (12) 

and similarly from lemma 2 

P'(x) = -(l-x2)n-1B(x). (13) 

We substitute next the expansion (6) into (8) and 
see that 

2V0-± (_l)*-iJ£Lff*=f} (-1)* 
(2k)\{ir U) 

(14) 

Differentiating (14) and setting 0—0 we obtain from 
this equation a number of relations for generalized 
Vandermonde determinants formed of odd integers 

2 F O = S ( - 1 ) * - 1 ^ S T ^ 
k=n (2*)! 

( -1 )* Vt 
(2k—m)\ r 2 * = 0 

k=n+m \2ilC — 2i7l 

f o r m = l , 2, . . . (2n—1) 

F*7T2* 

2m)! 
= ( _ l ) n + m7r2(n + m ) y n + m 

for m = 0, 1, 2, . . . ad inf. 

v 1 r—I")*-1 

jk-n^i+r ; ( 2 i - 2 n - 2 r o - l ) ! 
= 0 

for m = 0, 1, 2, . . . ad inf. 

YO-S) 

In the following we discuss several configurations 
of the integers bu b2, . . ., bn, which lead to non-
negative trigonometric polynomials g(0), the results 
are given in statements, labelled (A) (B) . . . (F). 
(A) If the bf are the first n consecutive integers, that 
is if bf=i for i = l, 2, . . .,n, then the trigonometric 
polynomial #(0) is nonnegative. 

Proof: From lemma 1 we see g(d)=A(l —cos 0)n, 
where A is a constant. Hence A=2~ng(Tr); from (2) 

n 
it is seen that g{ir)= VQ+^Am. Therefore ^1>0 

m=l 

and consequently #(0) nonnegative for all values of 0. 
(B) If the 6* are the first n consecutive odd integers, 
that is, if bi—2%— 1 for i = l, 2, . . . , n then the 
trigonometric polynomial g(6) is nonnegative. 

Proof: Since 6w=2n—1 the polynomial B(x) of 
lemma 2 reduces to a constant B. From (13) we have 
P / ( x ) = - B ( l - a ? ) " - 1 or, in view of P ( 1 ) = 0 , 

Formulae (11) and (2) show then that P(0) =g(v/2) = 
Fo>0 , hence 

5= P(0) 

J> 
->o. 

-ty-'dt 

Therefore P ( x ) > 0 for | x | < l . This completes the 
proof of statement (B) since the inequalities 
P(x) > 0 for \x\ < 1 and g{d) > 0 for all 0 are equivalent. 
(C) If bn=nJrl, that is if the numbers bx, . . ., bn 
are obtained from the first consecutive (n-\-l) integers 
by omitting the integer k (l<k<n) then the trigo­
nometric polynomial g(6) is nonnegative if and only 
if 2k2>(n+l).^ 

Proof: In this case P(x) has degree (n+1) so that 
according to lemma 1 A(x) is a linear function. 

A(x)=a+bx. (16) 
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The substitution (10) transforms cos kd into Tk{x) 
where Tk(x) is the k-ih Tchebicheff polynomial of 
the first kind. Formulae (2), (3) and (16) show that 

P(x) = (l-x)*(a+bx) = V0+ib(-l)m±mTbJx). (17) 
m==l 

The coefficients a and b of A{x) can be determined 
from (17), after some elementary computations it is 
seen that 

«^-[*+Wr£\ <18> 
In the interval |# |<0 the functions A(x) and P(x) = 
(1 — x)n A(x) have the same sign so that it is sufficient 
to determine when A{x) is nonnegative in |x|<[l. 
From (18) it is seen that A(x) > 0 in j# |<0 if and only 
if n(n+l)+k2>(n+l)2 -k\ that is if 2k2>n+l. 

(D) If the hi {i = l, 2, . . ., n) are all odd numbers 
and if bn=2n-\-l so that b\, b2, . . ., bn are obtained 
from the first (n+1) odd integers by omitting the 
i - th odd integer 2k—I (1<&<7&), than the trigono­
metric polynomial g(6) is nonnegative if either one 
or the other of the following conditions is satisfied 

but 

&>7> ( l + VT+2^) 

fc<£(l + VT+2^), 

(i) 

(ii) 

-2k(k-l) 
2[n(n+l)-k(k-l)} 

where zn is the root of the equation 

<z 

f-(l-t2)*-1(t2-z*)dt=Q (19) 

which falls into the interval (0, 1). 

If neither (i) nor (ii) is satisfied, then the function 
g(6) assumes also negative values. Moreover it is 
possible to simplify (ii) for large n by proving the 
Corollary to statement (Z>). 

If for large n and k<C[l + -yJl+2n]/2 also 

v ( » + i ) [ n - 2 * ( * - l ) ] 
< P = = 0.5939157. 

2[»(n+l)—fc(ife —1)] 

then g($) is nonnegative; if on the other hand 

(n+^[n-2k(k-l)] 

2[n(n+l)-k(k-l)] > P 2 

then there are integers n and k for which g(6) assumes 
positive and negative values. 

To prove statement (D) we need the following 
lemma 

Lemma 3. Let 

and 

°s(x)= f 1 ( l - ^ 2 ) w - 1 P ^ f o r s = : 0 , 1 

G(s,rt=Pi(aO-? aP0(aO-

(20) 

(21) 

The polynomial Q(x, f) is nonnegative in the interval 
— 1 <x < 1 if and only if 

f<s». (22) 

Here zn is the root of the equation 

R(z)=Q(-z,z)^ f (l-t2)n-1(t2-z2)dt=01 (23) 

which falls into the interval (0, 1). 

In+-zn. Moreover let w n=-Wr 

Then lim wn = p exists and is the root of the equation 
n—»oo 

P ( p ) = V ^ ( ^ - P 2 ) - 2 p 3 J o
1 ( l - i 2 ) 6 - ^ 2 ^ = 0 , (24) 

which is located in the interval ( 0 , J „ ) ' 

Some values of zn as well as p were computed. 
The proof of this lemma is rather lengthy. In 
order to avoid interrupting the discussion of the 
various nonnegative trigonometric polynomials, this 
proof will be given in the last section of this paper. 

We proceed now to the proof of statement (D). 
According to lemma 2 B(x) is a polynomial of the 

second degree. Since the bt are all odd numbers 
P'(x) and B(x) are even functions of x so that one 
obtains from (13) and (2) 

P\x) = -(l-x2)n-Ka+cx2) = it(-l)m*mTlJx). 

This relation permits us to determine a and c, and it 
is seen that 

P'(x) = 

-2 2 " (2« ,+ l )A r e( l -x 2)M- 1 j 
-2Jfc(fc-l) 

2[n(n+l)-k(k-l)} 

If we use for brevity the notation 

7=2 2 n (2«,+ l)A„ 
and 

n-2k(k-l) 
fn '* 2[n(n+l)-k(k-l)]' 

(25) 

(26) 
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we have 

(27) 

If (i) is satisfied we see that £ltk<0, so that from (27) 
P'(x)<0 for | z | < l . In this case P(x) is non-
increasing in the interval — 1 <x< + 1 , since P(1) = 0 
this means P(x)>0 for \x\<l so that also g(6)>0. 

We assume next that (ii) is satisfied, then fn,fc>0. 
Since 7 > 0 and P(x) = yQ(x, {"»,*), we see that state­
ment (D) follows immediately from lemma 3. 

(E) If the numbers bXl . . . , bn are obtained from 
the first consecutive (n+2) integers by omitting the 
two integers k and p where l<k<p— 1 < T I , then 
g(6) is nonnegative if and only if a certain polynomial 
Q(x) of the second degree is nonnegative for | x | < l . 
Here 

Q(x) = 4x2+4[7i-L(n, k, p)]x+2n2+(n-2)-

4nL(n, k, p)+N(n, k} p), (28) 
where 

L(n,k,p)--
_(n + 2)[(n+l)2-k2][{n+l)2-p2]^ 

[(n + 2)2-k2][(n + 2)2-p2] 

N(n k v)_(n + 2)(2n + S)(n2-k2)(n2-p2) 
n ' )P) [(n+2)2-k2][(n+2)2-p2] 

y (29) 

Proof: In this case bn=n+2, so that according to 
lemma 1 A(x) is a polynomial of the second degree, 
A(x)=ax2+bx+c. From (12), (2) and(3) we have 

P(x) = (l-x)n(ax2+bx + c) 

= V0+f:(-l)mAmTbm(x). 
m=l m 

(30) 

From this relation we can determine the coefficients 
a, b, and c. A somewhat tedious elementary 
computation shows that 

A(x) = (ax2+bx+c) = 2n~1AnQ(x). 

This completes the proof of statement (E) which 
follows immediately from (30). 

Certain particular cases can be discussed easily 
(a) Iik=p—l=nihenN(n,nJn+l) = L(n,nyn+l) 

= 0 so that Q(x)=4:x2+4nx+2n2+n—2. The dis­
criminant of Q(x) is then —16(n — l)(n+2) and is 
negative for n^>l. Therefore, Q(x)>0 for all x so 
that g(0) must be nonnegative. 

(b) If fc<n while # = ( n + l ) t h e n i ( n , k, n+l) = 0 
and 

N(n k n + l ) = - ( w + 2 ) ( 2 n + 1 ) ( n 2 - P ) -

Q(x) and its discriminant can be computed easily 
and it can be shown that g(d) is nonnegative if and 
only if 

(n-l)(n+2) 
2n 

(c) If k=n — 1 and p=n then N(n,n — l,n) = 0and 

TV i \ n(n + 2) 
i ( n l n - l > n ) = g ^ p r ) . 

The discriminant of Q(x) is then 

16 
9 ( n + l ) ' 

( - 2 n 4 - 5 / i 3 + 7 7 i 2 + 2 7 n + 1 8 ) , 

which is negative if n > 3 so that in this case g(6) > 0 . 
If 7i=2, Q(x) has two roots in the interval 
—1<£< + 1 so that g(ff) assumes also negative 
values 

We proceed to discuss a more complicated case 
by assuming that the b\, b2y . . . , bn are obtained 
from the first (n+2) odd integers by omitting two 
odd integers (2k — 1) and (2p —1) where 

\<k<p-\<n (31) 

so that bn=2n-\-3. 
We see then from lemma 2 that B (x) is a poly­

nomial of degree four. By the procedure employed 
in case (C) it is possible to determine the coeffi­
cients of this polynomial. 

We obtain 

Here 

P'(x) = -y(l-x2)n-1B(x) = -y(l-x*)n~1('±xi+ax2-b) (32) 

7 = 22"(2n + 3)A„>0, 

2{-2(n+iy(3n+5) + (n+l)(2n+5)[k(k-l)+p{p-l)]-4k(k-l)p(p-l)} 
[(n+2)(n+l)-k(k-l)][(n+2)(n+l)-p(p-l)] 

{-(n+l)(3n+4) + 2(n+l)[k(k-l)+p(p-l)]-4k(k-l)p(p-l)} 
[(n+2)(n+l)-k(k-l)][(n+2Xn+l)-p(p-l)] 

(33) 

142 



The trigonometric polynomial g(6) is nonnegative if 
and only if 

P(x)=y ( l - f 2 ) n - 1 ( 4 i 4 + a f 2 - 6 ) ^ > 0 for a l l | a ; | < l . 

(34) 

The nonnegativity of the polynomial P(x) depends 
on the nature of the roots of the polynomial 
B(x)=4:X/L+ax2 — b. This introduces the need to 
distinguish a number of cases. For this purpose 
we write 

^(r) = 4 r 2 + a r —6 = 4(r —ri)(r —r2) where \ 

- a + V a 2 + 1 6 6 f (35) - a - V a 2 + 1 6 & 
T l = 8 T2 8 

We are now in a position to formulate statement (F). 
(F) If the numbers &i, b2, . . ., bn are obtained 
from the first consecutive (n-\-2) odd integers by 
omitting the two integers 2k — 1 and 2^—1 (where 
l<k<p— l<ri) then the trigonometric polyno­
mial g(6) is nonnegative if and only if one of the 
following four, mutually exclusive, conditions is 
satisfied 

(a) a > 0 a n d b < 0 , 
(0) a < 0 a n d a 2 + 1 6 6 < 0 , 
(7) a > 0 and 0 < 6 < 4 + a and also 

a2 

(5) 0 > a > ~ 4 and ~ - - < 6 < a + 4 and also 

i 2 2 ( V ^ ) j r n B i ( V ^ ) > 0 , and if n > 0 

Here 

Bi(z)= f1 (l-t2)n-H2«-»(t2-z2)dtfori=l,2, (36) 

so that Rx{z)=R{z) as given by (23). 

Proof: If A ( r ) = 4 r 2 + a r - 6 > 0 for 0 < T < 1 , then 
P / ( x ) = - 7 . ( l - » 2 ) n " 1 A ( a ? ) < 0 for - 1 < Z < 1 . Since 
JP(1)=0 we see that P(x)>0 for - I < z < + 1. 

Clearly h(r)=( 2T+J) " " T A " " ^ therefore 

A(T) > 0 in 0 < T < 1 if and only if (37) 

( 2 T + | ) , > 5 ! ± i e » i n O < r < l . (38) 

If a > 0 , (38) holds if and only if 6 < 0 , but this is 
exactly condition (a). 

We next derive the condition for the validity of 
(37) when a < 0 . Clearly A / ( r ) = 8 r + a , A/'(r) = 8, so 
that h(r) has a minimum at T=— a/8. 

We consider first the case | a | /8= —.a./8<l,. we 
have then 

• W N i / - a > \ «2+166 
0<T<1 \ O / 16 

Relation (37) is therefore satisfied if — 8 < a < 0 and 
a2+16&<0. If | a | / 8 > l w e s e e t h a U ' ( r ) < 8 ( T - l ) < 0 
in 0 < r < l , so that min h(r)=h(l)=4:+a— 6. 

0<r<l 
The function A(r) is nonnegative if a< — 8 and 
4 + a - 6 > 0 . B u t a 2 + 1 6 6 = ( a + 8 ) 2 - 1 6 ( 4 + a - 6 ) f o r 
any a, hence if a2+166 < Owe always have 4-fa — 6 > 0 . 
The alternatives discussed for case a < 0 can there­
fore be joined so that condition (/3) is established. 
To complete the discussion we must consider the 
remaining cases, namely 

(70 
and 
(50 

a > 0 and 6 > 0 , 

a < 0 a n d a 2 + 1 6 6 > 0 . 

In case (7') we see from (35) that rx<C0 while r 2 > 0 . 

Since P (x) = 4 7 T (1 -t2)n~l (t2 - T l) (t2 - r2) dt, it fol­

lows that P(x) < 0 if T 2 > 1 , that is if -yja2+166>a+8, 

but this occurs if and only if 6 > 4 + a . 
Thus P(x)<0 for - 1 < Z < 1 if a>0 and 6 > 4 + a , 

therefore (7') reduces to the case 

(7") a > 0 and 0 < 6 < 4 + a . 

In this case both roots rx and r2 are real and_a 
simple computation shows^that min P(x)=P( —JT2), 

- 1 < Z < 1 

hence P(x) > 0 in |x| < 1 if and only if 

J —-VT2 

That is if 

f1 ^{i-ty-i{t2-T2)t
2dt-

J — \T2 

J —"VT2 

or, written in a more concise notation 

so that (7) is established. 
We proceed with the discussion of the last case 

(5')a<C0 and a 2 + 1 6 6 > 0 and show first that always 
a + 4 > 0 . From (33) we obtain easily 

(q+4) = 2 ( n + l ) 2 ( ^ 2 + ^ - l ) + (7i+l)[fc(fc--l)+j>(j)-l)]-2fc(A:-l)p(ff--l) 
2 [(n + 2 ) ( n + l ) - f c ( f c - l ) ] [ ( - f i + 2 ) ( n + l ) - r p ( p - l ) ] . 

143 



On account of (31) this fraction has always a pos-
dtive denominator so that its sign is determined by 
the sign of the numerator which we denote by 
M(n,k,p). We have then 

M(n,k,p)=p(p^l)[(n+l)-2k(k-l)] + 

(n+ l)k(k—l) + 2(n+ l)2(n2+n-1) 

= k(k-l)[(n+l)-2p(p-l)] + 

(n+l)p(p>-l) + 2(n+l)2(n2+n-l). 

If (n+l)-2k(k-l)>0 then M(n,k,p)>0. If on 
the other hand (n-\-l) — 2k(k —1)<0 then also 
(n+1) —2p{p — 1 ) < 0 . ThereforeM(n,k,p) decreases 
for fixed k and increasing p as well as for fixed p and 
increasing k. Hence M(n,k,p) attains its minimum 
value if k and p are as large as possible, that is 

M(n,k,p) >M(n,n,n+l) 

=2(n+l)2(n2+n-l) -2n2(n+l)(n-2) 

>2n2(n+l)2-2n2(n+l)(n-2) if n>\. 

Therefore M(n,k,p) >6n2(n+l)>0 if n>l so that 
also a + 4 > 0 . I t is therefore no restriction if we 
write the case (8') in the form 

($') 0 > a > - 4 a n d a 2 + 1 6 6 > 0 . 

We must first consider the case 

(5i) 0 > a > — 4 and 6 > a + 4 . 

We have then a 2 + 1 6 6 > 0 so that h(r) has two real 
roots; from (35) we see that T I < 0 while r 2 > l . 
Therefore 

for — 1 <x< 1 so that (5i) does not yield nonnegative 
trigonometric polynomials. We finally have to in­
vestigate the possibility that 

(S2) 0 > a > - 4 a n d - j ^ < 6 < 4 + a 

holds. Again a 2 + 1 6 6 > 0 and A(r) has two real 
roots ri and r2. I t follows then from (35) that 
l > r 2 > r 1 > ~ l . 

Assume first that r i > 0 . 
By a simple computation it is seen that P(x) has 

the two minima+VTi and—-ypT2 inside the interval 
(—1, + 1). P{x) is therefore nonnegative for 
- 1 < x < l if and only if P(VT~)>0 and P ( - V ^ ) > 0 . 
According to (34) and (35) this means that 

r ( l - * 2 ) " - 1 ^ 2 - ^ -

n f (l-ty-^-r^dt^O 

and 

f (i-ty-w-T^dt-

r2C (l-ty-^-rJdt^O 
J Vri 

or, using the notation of (36) 

and simultaneously R2(—^T^) — r2Ri(—y^O^O. 

If T I < 0 then there is only one minimum for P(x), 
and therefore only the first condition remains. 
This establishes condition (5) and completes the 
proof of statement (F). 

In this section we give proof of lemma 3, which 
was stated on page 141. We write P s ( x > =r (l-t2)n~H2sdt (s = 0,1) (39) 

and want to determine the conditions which f has 
to satisfy in order that the polynomial 

Q(x^)=Pi(x)-t2Po(x) (40) 

should be nonnegative for — 1 < # < + 1. 
Clearly 0<CP1(x)<P0(x) for - 1 < z < + l . There­

fore <?6r,f)<0 for | x | < l if f > 1 . If for some value 
fo such that | f 0 | < l the function Q(x,{0)>0 for 
| x | < l then also Q(x,£)>0 for | x | < l and |f!<|f0 |. 

To obtain a criterion for the nonnegativity of 
Q(x,£) in \x\<l we have to determine the greatest 
possible f such that | f | < l and Q(x,£)>0 for | x | < l . 

An elementary computation shows that the func­
tion Q(x£) has exactly one minimum in the interval 
— I < : r < + 1 which is located at x=— f. 

We consider next the equation R(z) = Q(—z,z)=0 
or, written in greater detail, 

P ( l - < 2 ) » - l ( ^ - g a ) * = P 1 ( - 2 ) - g > P 0 ( - g ) = 0. (41) 

Clearly # ( 0 ) > 0 while J S ( 1 ) = P 1 ( - 1 ) - P 0 ( - 1 ) < 0 so 
that the equation (41) has at least one root in (0,1). 
Moreover 

g = - 2 s £ ( l - ^ 
so that dR/dz vanishes in the interval 0 < 2 < 1 only 
at the point 2 = 0 , therefore the equation (41) has 
exactly one root zn in the interval (0,1). 

Since min Q(x, zn)=R(zn) = 0 we see that Q(x, zn) 

> 0 in | z | < l and therefore Q(x, f ) > 0 in | B | < 1 
if f <^ w . 

If however f >2W then 

Qir-Zn, f) = P l ( - 2 n W 2 P o ( - Z n ) 

= - ( f 2 - ^ ) P o ( - ^ ) < 0 
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so that Q(x, f) assumes also negative values. This 
establishes the first part of lemma 3. We still have 
to discuss the asymptotic behaviour of the solution 
of equation (41). 

We derive first a useful inequality. By definition 
zn is a root of equation (41), therefore 

f+1 (i-t2)n-\t2-z2
n)dt= f~2w (l~t2)n-\t2-22

n)dt>0. 

If we set 

then we see that 

2 

wn = Jn+-zn (42) 

or 

[\i-t2y-l(t2—^\dt>o. 

f1 -1 w2 f1 - 1 

(l-t)n-H*dt % (l-t)n-H ~*~dt>0. 
Jo ^ , 1 Jo »+2 

We see therefore that 

so that 

r(n)r(|) wl r(n)r(l) 

wlAovzl^w-

>o 

(43) 

In order to derive an asymptotic estimate for wn 
we rewrite (41) by dividing the interval of integra­
tion into two parts (—2,0) and (0,1). The integrals 
over the second interval may be easily expressed in 
terms of gamma functions. A simple computation 
yields: 

If we write 

2(n+|W»+±) 
r(n) 

and 

/ , ( « ) = f (1 - g ^ ' - ^ l -*2) d«, (44) 

we have 

i ( 2 ) = ^ V x [ i - ( 2 » + i)z2] \($) \ n + V z*In-

From the asymptotic formula for log r(x) it is seen 
that 

'K) 
(n+|)*r(, :») 

=exp| ——+o(n-1)\=eo<,n ») 

hence 

L ( Z ) = ^ [ l - ( 2 n + l ) z 2 ] - 2 e o ( » - 1 ) ( » + £ ) ^ 3 J B . 

(45) 

We next transform the integral In. Let 0<Caj<^l 
then (1 — x)e*<l and (1—aO"-^- 0 1 - 1 ** , therefore 

0<l-[(l-x)ex]n~1<(n-l)[l-(l-x)ex]. 

Since e x > l + x we have also (1 — x)ex^>l — x2 and 
1 — (l — x)ex<x2 so that finally 0<l — {l — x)n-le{n^l)x 

<(n-l)x2 or 0<e-^1)x-(l-x)n-1<(n-l)x2. We 
replace here x by s2£2 and see that 0<O~(w~1)22'2— 
(1 — g 2 ^ » - i < ( n _ l ) g V for g V < l , so that 

(l-22t2)n-1 = e~(n-i)z2t^-.(n-i)enz^ for 22£2<1 

with O < 0 „ < 1 . 
We substitute this into the expression (44) for In 
and obtain 

/ , = C\-(n-l)z*t\l-t2)dt-^ ( n _ l ) g * (46) 
Jo o5 

for z 2 < l w i t h 0 < 5 „ < l . 

We have 

Since 0 < l - e ~ ^ z 2 ' 2 < f z 2 * 2 we see that ( l - e " ^ 2 ) 

= 7]Z2t2 with 0 < r j < 3 / 2 and hence 

therefore 

f 1
e - ( n - l ) 2 V ( l _ ^ ) ^ = f 1

6 " ( n H ) A 8 ( l - t a ) * 
Jo Jo 

o \ 

15 

with 0 < > < 1 and 0 < X < ^ 
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Substituting this into (46) we have 

15 35 

with 0 < S „ < 1 , 0 < < r < l , 0 < X < 2 » 

We introduce next a new variable w 

(47) 

using (45) and (47) we see that wn satisfies the 
equation 

V^ P^-vA-2wl e0'""') Fe-V (1 -t*)dt 

—2wl e°e»-'> 
2X j £ | 
15 »+| 

g 1+1 " ^ 2g,wj ( » - l ) 
35 K): 

= 0 

(48) 

For each value of n this equation has a root wn, by 
(43) we see that the set of these roots is bounded. 
We consider any accumulation point p of this set 
and a subsequence {wTOJ of the sequence {wn} such 
tha t lim wni=p. From (48) it is seen that p satisfies 

the equation 

^(p) = V ^ ( | - P 2 ) - 2 p 3 j o
1 6 - p ^ ( 1 - ^ = 0 (49) 

and by transforming the integral we obtain finally 
for p the equation 

F(p) = ^(^-p^-f\p>-x>)e-*dx = 0 (50) 

To complete the proof of lemma 3 we have only to 
show that the sequence {wn} converges. We dem­

onstrate this by showing that {wn\ has only one 
accumulation point, and this follows if we show that 

F(p) = Q has only one root in ( 0,-J-f 

We see easily that ^ ( 0 ) > 0 and F\-J^)<^ s o 

that there is at least one root in the interval. 
From (50) we see that 

F'(p) = -2p[^fir+2 £Pe-*2dxl 

so that F'(p)<0 for p > 0 . This shows that F(p) 
has exactly one root. 

The equation (41) has been evaluated for certain 
values of n, similarly the asymptotic solution p has 
been found from (50). This was done in part at the 
Computation Laboratory of the National Bureau of 
Standards, Washington, D. C , and in part at the 
computation department of the Institute for Numeri­
cal Analysis in Los Angeles, Calif. The results are 
given in the following table, which shows also the 
values of wn. 

n 

2 
3 
4 
5 

6 

7 
8 

9. 
10 
15 
20 

Zn 

. 38197 

. 32114 

. 28244 

. 25505 

. 23434 

. 21798 

. 20463 

. 19346 

. 18395 

. 15122 

. 13141 

wn 

. 60394 

. 60079 

. 59915 

. 59814 

. 59745 

. 59696 

. 59659 

. 59630 

. 59606 

. 59536 

. 59500 

P=0.5939157 

WASHINGTON, May 25, 1951 
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