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Properties of Certain Statistics Involving the Closest Pair
in a Sample of Three Observations

Juling Lieblein

Triplicats resdings are of wide oceurrence in cxperimental work,  Docasionaily, how-
aver, only the olosest pair of & trisd iz used, and the outlying high or low one discarded as

evidencing some
legding to precise
project was sug
#ig of publishe

OHS €ITOT,

etermination of same of the Hases that reautt from such seleation.
ted by certain experiments fnvol ving random sempling numbers and al:w.lar-
chemical determinationa, The theoretical findings agree clozely with toe

The present paper presents s mathematical investigation

This

empirical eeaults and imply that seiected pairs not only tend to overeatimate conalderably
tha praciglon of the experimantal protadure, but alzo repult in less accurabe determinations

1. Introduction

Triplicate determinatione are fairly commean in the
chemical laboratory inssmueh as & third one is occa-
sionally taken to indieate which of the other two is
more hikely to be off the mark. A corollary of this
iz that if only two of the three measuremcents are in
close agreement the worker is under s tempta-
tion to diseard completely the remaining Jistant one
on the ground that evidencs of grosa arror is present.
A gimilar practice also appears to be encouraged by
inastruction methods in quantitative chemical analysis
which de students not ooly upon the correctness
of ther results, made in duplicate, but also upon
their precision as maasnred by the diffarence batween,
the two reeulta. Thus, a stedent might hope to im-
me his record by quietly making & third, uncatled-

or analysis, give himsclf the advantage of the closest
two of all three, and omit to mention the remeining
one. This is & very striking casze of the long-steadin
problem of the rejection of putlying obeervations an
raizes the statistical question of how estimates of the
mean and varisbility of analyses are affactad by such

rocedures. Tt is t{is question, rather than the re-
jection of outlying chacrvations,' ? that is cinphasized
m the present investigation, althongh the reiection

rohlern is also fouched on, in connection with the

t of the thrae statistics, ¢, discussed below.

The author is indebted to W. J. Youden for draw-
ing his attention to this guestion and auggesting its
theoretical investigation ‘\i?hﬁﬂ search of the statistical
liternturz indicated that this apparently simple
proklem had not been considered heretofore.?

Apcordingly, the present study was exscuted and
rogulted in the preseni paper, which B purely n
mathematical treatment undertaken to verify wnd
extend certain aampling resulis, obtained by Youden
in &0 empiricel investigation of the above question
which were veported in the National Bureav o
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Standarde Technical News Bulletin for July, 1949
3. The method of treatment was to study some
of the properties of two measurements that are
selected out of & satnple of three according to 4 stated
criterion, computed from the sampls o ations.
The statiztics that define such properties are of more
goneral character than order etatistice—that is, ob-
gervations ordered according to size, such as the
largeat value in a sa,mple,“:ﬁe sample median, ete.
Whereas order statistics are widely troated in the
literature,® the type of statistics being considered
here, which depend on features other than size, have
apparently received relatively little attention?
kis raport is thus limit.et{ to-the following three
guestions, answers 10 which will serve to throw light
on the differences to be sxpected between taking two
mepzyrements st random (“tree duplicates'™ and
taking two measnurements that are really part of a
random sample of three® (1) In a random sample
of three observations from a single (eontinuous)
Eupu]ation what values of the following raiio may
¢ considered significant: ratio of the gap betwean
the two closest values to the whole range of the
gample? (2} How does the range in & sample of
true Juplicate measurements compare with the difer-
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ence between the two wvalues in each of {a) the
closest pair out of & sample of three messurrments,
{h) the lowest (or highest) pair out of such a sample,
and () the pair of extremea (highest and lowest
values) of the entire sample of throe—uas regards
several types of universea? (3) How do the means
compare in each ecase? It is not intended to con-
sider other probleme that can arise, such #s drawing
the sample from u mixed population, or adopting &
rule to omit the extreme measurament only when
the range of the three observations oxeeeds & specified
value, and utilizing all threc of them otherwize.
Neither is it intended in this paper to go into any
other statistiesl questions such ws estimation and
significance teets or more general decision problema.

2. Summary

The anewers to the above guestions invelve pri-
marily the investigation of the distributions of the
three statistics, ¥, ¥, and 4, whose main properties
are summerized i tables la and 1b below and
compared with the resnltz of both actual sampling
by making use of a table of random numbers, and
datsa on chemical analyses that appesrcd in the
chemical literature.”

The statistica y, are defined as follows. Let r,
Zz, ¥y ba the sample of three observations arranged
in order of increasing magnitude:

I P
Let now .

mf’ xh"j z’”’
designate the same three observations rearranged so
that " and %'’ are the two dlosest of the three and

z >x'*. Then the selected statislics treated are
mi‘_If! xf_wf-' mi’_{_xi'f
W=g e W= g v W5

Resnltz ave presented, insofar a2 they have been
obtained, for the three parent universes, rectengular,

1 For sdditirmal comparbnme wilh experimenlil fdaln tht carne th the gl hor
attention toa Mte far Inclnsion in the maln body of the papar, see kmknota 3,

right triangular, and normal, though not necessarily
in the same detail for each one, .

The comparisons indicated in table 1 reveal the
following facts for random asmples of three messure-
ments, whers, utiless otherwise stated, the atatements
apply to samples from s normal or & rectangular
population:

1. The empirical sampling results, obtained prior
to the theoretical calculations, show fairly substantial
agreement with the theory.  The chemical data from
experimental determinations reported in o chemical
journal sand stodied by W. J. Youden are likewise
in agresment® .

2. The statistic 4, which characterizes the parti-
tion of the range by the middle item in a random
sample of three measurements, bebaves remarkahly
alike for samples from three different basic popula-
tions, the normal, rectangular, and right trisngular
{table 1&), This sugpesis that thiz ratio statistic
will not be very useful as a eriterion for discriminat-
ing between a normal populatien and some other
population. '

3. A set of two obscrvations selected by taking
the closest two out of three from o normal or n
rectatgular populalion differs strikingly from other

airs taken from the three or from a pair of true
uplicates, asz shown hy the following:

8. The average dﬁ:ﬂyme (as measured by )
hetween the aclected pair is less than half that g}r
the true duplicates, and the anme i85 true of the
variability of this distance as measured by the
stapdard deviation (table 1b, Part A, Col=, 1, 3 and
4, 6). Furthermore, the diffarence between the
selected pair behaves (sgain in an average sense)
very much like Aalf theaﬁiffemncu botwean the two
loweat (or highest) m the full sample of three, and
{in the same sense) is similar to one-guerter the
difference between the two most extreme megsure-
ments in the sample. The standard deviztion of
the difference hetween the closest pair iz, howewver,
comparsble to the standerd devimition of half the
ratige {table 1b, Part A, Cols. 1, 2, and 4, 5).

L. The wmeen {15) of a =elected pair vares some-
what more than the mean of a true duplicate pair,
the average value of both these means being the

! For oiber empdrlesd evidonce see footnote 3.
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same. Especially noteworthy is the fact that the | the mean of all three {table ib, Part B, cols. 1, 4.
true average of the population iz more nccurately | Thus, selection of TMeasurementa on the basis of close
estimuted by using the two most diserepant observa- ngrf?mﬂ:lt ingreases rather thean decreasez the true
tions of the three in forming an average, ¥ (#:+2;), | error of messurement.

than by taking the two that are most in agreement, In addition to the above relationships the be-
although neither method is as accurate as t.ﬁ.kmg havier of the outlying observation &’ is of intereat

Tarre 1b. Chuerocterielios of other tloristics related b the plogest patyr of meaaurements in @ semple of 8
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and will be briefly considered,

Although the besic idess present litila difficulty,
the explicit walues and probsbility distributions
needed in thizs paper often involve caleulation of
multiple iut a{; over quite complicated regions.
The exact calculetion of these integrals has usually
required much tediovs manipulation, too lengthy
to warrant more than the briefest indication, A
detailed manuseript of these procedures is in the
possession of the author.

3. Derivation of Results; Descriptive
Properties

A.1. The Stabstic 7,

4. Distribudcn and moments in genscal

Tt 2y, Ty, 33 be the three observations, arranged
in order of magnitude, ‘n & random semy la of threa
from & populetior with pdf (probability density
function)  #{x), supposcd continucus (and dif-
ferentiable as often a3 necessary), and suppose
¥ {z&ois nonzerd in the interval (a, b) where either
or hoth endpoints may be at infinity. Then the
joint deneity funetion of 2, ¥, »; is [6]

plxTaadrdm e, =3 (e f (@) F(zaddadxudia,,
ey e <y h {13

Letting ">z’ be the two closest ahservations, the
statistic 1, may bc wntten

] !

— Y

x T v
th= =min (YY),
Ty— T
whars
Ip—1I) Tg— ¥y
k¥, Te, )= 3 Yol 2y, 2, 20) 2
PulEn Tz =1 — 0 yultn 2y 2o —

=1—Yulx:, 72,14

{1a)

are simply functions of the »'s and will be used with,
the arpuments often omitted for brevity. Thua it is
required to find the distribution of the variate g,
de%ned over D=1 <%, which takes different fune-
tional forms, namcly

. 1
Huld, Be, s} fo= Bl 2a,xa) EE

th=
thal® e, a2 if DS yuz o2l £ %s

where 3, i are simply used ag abbreviations for the
fractions in {la).

To find the distribution of ¥, we have {in the
notetion of the theory of probability), since the
events indicated on the right are muteally exclusive,

P{n<Yi=P{o <y <Y, 0<yu<y]

+P{0<ysY, 0<pussh @

which is equivalent to
¢, if ¥<0

PlO<yy <Y )+

Ply Y= Plo<y<¥} if 6SF <

vl ~

1, Y>3
(2a}
The equation {2a) can be differentiated with respect

F:n ¥ to give the probability density function in the
arm

Pond=plyn)+plya), i 0<yn, y|g£%=ﬂ',

=1, otherwise,

(2h)

with , and gg replaced by 91 in the resuit. Thus
the required distribution is reduced to those of ata-
tistica of the usnal type,
To find &, (), apply the tranzformation ?
In=r—g
ze=r—g{l —yu)
Ey=F

{3)

to {1}, obteining

hiyi g0y dr do=8g fir — g flr — gl — 0] fidydr di,
CEgsr—a,e2rsh, 05y <1 (4

whenee the pdf of the variate 3, is

piw= [ [ 8a fr— @ —g~yade dr .

=il —tu), D=y =1,

Sinca yy=1—y,, its density funciien iz, similarily,

piyid= | “f;" 6q fir— @ Fr— ey da dn,

Gyl (8}
Henee finally {2b) gives
w= [ 64 str—arsrretmidgdn
0Ly <y @

# This i obtained by putiing iu-'l::—::l = Fa— A, B0 P
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where

g(y=flr—qud+ flr—a(l -, (8)

as the %‘eneral formuls for the distribution of ¥, for
a population with continvous pdf fx).

The above expressions appear to lend themzelves
to but few eral statements. Thus, it may be
seen from (7} and (8} that for & rectangular parent
population f(z} the distribution p(y) of ¥, 18 rec-

lar. rihermore, 3, will evidently be ree-
tangularly distributed for all parent distributions for
which the function &{y,} doea not depend upon ¥,
that is, for which the function

#l)=fr—ay)+flr—q(1—

depends at most upon + end g If 7 is & linear
function (triangular or rectangular distribution),
thisgf EEI:H:“ t.nlﬂliz:-a true, for th:h s eanecel out. Con-
vergely, by differentiating with respect to g, it can
be shown thai if ¥, has a rectnn dist.ri!butiun,
then f must be linear, if differentiable.

For future use, it iz desirable to obtain general
expressions for the moments, pg, of 4. In view of
f1a), (2], and (6) these arve given by

i 4
Hy= J; v ply) dyh= J; s pu(9e) At

i
J; Pl ~ 412} dye
which, imder the transformations
F11=%—3: Y= %— £
bacome
i1 & 1 1
w= G-t [n (G-t )e(5+e)] o

. in which g, ia the pdf of the ratio

If the function (%) is one that is symmetrical about

w=c then u, may be written, puttiog -;——t=s,

fi= Ef &' piigMde,

Dizon [7] for samplés of three and various larger
gizes as well." .
b. Rectangular unlrerse
For sthe rectangular or uniform parent univerae
given by
f{f}—_-l,

and zero elsawhera (this simple form is called the
“square’” universe), tha peneral expression (7)
hecormes

1
‘P{m}'——ﬂﬁfﬂg dgdr=2, 053,-.5%,

D<=l

varify‘ilgathat the ratio ¥, also is rectangulnr.
The first few moments are

1 1
Eip)=p Ewﬂ=ﬁ; ul[yﬂ=%=.l 443.
It is interesting to see whether values of the ratio

y;lt.end to depend on the gpread, £y—x,, of the sample
values.

It can be shown by the method uged in obtaining
{4} that, for the rectangular case, the joint probability
density function of ¥y, x,, %; 18

1
ﬂﬂ!ﬂﬂi'

Jn,men=12{x,—m), 0<nSn=l,

Since this ia independent of w,, it follows that the
ratio %, ia independent, not cmjy of the range, but
alz0 of both sampie extremes 7, and 2.

¢, Trinngulor universe
In simplest form this is given by
Fley=2z, 0=z<l1

and zero elsewhere. Formula (7) here gives

#wi= | [ 8ote—olr+o—oldgdr=2,0<y 5

so that the distribution of g, ia identical to that of
the previous case.

that gives A thiyough reatmang

in tapting whether Sutiying

(or several sech) should he rejocted. OF Lhese statleibos, the only

gﬂﬁ th;.t baa any direck relationabip to any sfudled Do the prassnt paper 13,
=g,

" — I =In —!_‘l-‘!‘
|

. + . . . . This bon, whinh {lor 4=} 12 the ame mI—yy) o (lad abotw, 18

For certain symmetrical uaiverses, the distribution | meatived oy 1z o0 o ctiseeion fe eOLToe b et ol 2o o Shgion

of y haz been investizated numerically by W. ¥, | Fpfiaed to Diwn for aaking bir twa paper seaibile in adwace of
93853182 T 258
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d. Normal Tniverss

For fizy=—— ¢, —w<g<w, (called the
2

unit or stendard normel distribution or universe},
formula (7) becomes

p= [ [ oo ~gle—r4 et

{r—- Em}"l)+erp(-% [tr— g+ 7+

(r—g 1~y1)’])}d'qdr, {l‘_-'-w-*_-’-%r (9
or
Y L u
P(yl}—m: UEFIEE'

This™ consists of the are of & Cauchy distribution

ourve included between the left-hand inflection

point and mode, and is shown in figure 1. Several
ercent points obtained from the cumulative
istribution are presented in table 2.

TasLE 2. Fercenloge points of i for the wnif normal

I 2 20 -5 w1
L Frtnsmil=2 arctnn( v )+1
Frotmbllty, F, ([ Crliml veloe, g,
that yy toes pot L
wen Tk E.:lve.n prababik.
o of pf by &
[ e F i
L] i 1] L]
il i 1513 oLl o, (W
1 0, Py 0. i DT
1 0, iR 0. 1 LI |
a5 I 14128
:N T . I3

' This disiribution has sloo been obialned by 3. K. Sedh 110).  {Bes also foot-
ngkes 3 and 15),

The abuve. table-bears out the fact that the ratio
¥ i not a good critarion to use for the rejection of
outlying observations. Thus, & ratio ss marked as
one-gixth or less, indicating that the outermost oh-
servation is at least five timea az distent from the
middle one ag is the remaining one, may be expected
(if the universe is norma]?lgﬁout 30 percent of the
time; even when the distances are in the ratio 10 to 1
or more, che by Do means bas & rare event—it may
be expected only 2 little lsss often than in one
sample cut of aix.

The moments ara given by

E{yJ:%—%a mgzu.zﬁznn,
343 3 27 432

oly)=Viy)=0.14280.

The correlation between the range and y, is found as
follows:

E[{Wa-‘ Ti} z;:i’: — Ely—u)- Ey)
p{Zy— 2y, )= alzo— %) olth)
_E' =)= Elwy—ai)- By,
a(ig—a,}- aly)
s, )= 0.45352 —(1.6026) {[}.26209}= 0.0781,

(0.888373(0.14280)

on making use of the fact that

E(:.:’—x”]=Ef2y9}=6_j_ﬁ=ﬂ.45352, 4 L1))
x
from a result obtained on page 263 and

EEz,—x.)zEE{zQu%—I,EQEET

o xa— =20z — 2olx,Ts)=2 (1 _9_2:1&)

=0.78920,

from tho exnct valucs given by Jones [9].

3.2. The Statistic 3= %{x"—a")
a. General Formula for Itz Distribation

The development of sectlon 3.1,a. can be used
but will not be given here, It will ba more frnicful,
however, to pursue an alternative method adapted
to the form of y; and ¥. This will readily yield the
jo'i'.*.':.lt distribution of §,, ¥ end thus simp]ify their
atudy.



We first obtain the joint distribution of z*, x™,
"', where it will ha recallad that z* and »'’ are the
two closes! observations, »'>x'', and 2’7" is the
TemAining cne, the outlying value, either above or
below the closest pair, Writing

r”=ﬂ,

=19, F"=w,

we have the transformation T given by

Fr=1
T when #:— 2 <gy—2s, 7
.8, £—2p-Fw20 ()
L=z
and - T
=1
when 2,—2, > 25—,
Ty= ,
tg, p—2¢+ w0 (R
Ty—0

We know the joint distribution of »,, r;, x:, namely

Pl o) =3 fz) flxdfzd e <o LS 58, (11)

and desire that of «, », w resulting from the transfor-
mation T. Since the regiona of definition becoma
ibereasingly combplex, we shall sacrifice some slight
generalit )l;y talkdng @=0, b=1, and reworking the
reeults whenever necessary. This will not be difhi-
cult once the general line of procedure has been
indicated.

Since the function in {11) is symmetrie, the density
function for «, #, 4 remains of the game form. The
only difficulty is determining the region over which
it 13 different from zero. By somewhat tedious
manipulgtions, this region may be shown to consist
of the portions: ¥

Sr—u<w<l, uEﬂi%{ﬂ—HJ. 0<u<l (B}

B
0w <2u—p, %vﬂuiﬂ, 0<o<1, (BY
g0 that the pdf lor (u, v, w) is
glut, v, w0)="6f(u}f(v) flw)in B’
' {12}

=1{ elsewheore,

The jeint distribution of w(=x") and #(=z")
may then be obiained by integration:

ok that fbe vapiabbes w, » apoear b raverse omler o ER{} oo pared with
. I the order B kopd {he sams, it 0] Ba foand thak ()7 Wil peed 14 be
ther braken Into 2 parts, (fy"] and (R, presant oeder will therelor:
o retalped in the Intarces of slmplelty, This need oocasion nn diffiealcy if
ture i nad whin Integruting,

ﬁf{ﬂ}ﬂﬂlf:_aﬂﬂ»’}dw,ﬂiui%{u+ 1, 0<u=1
13)
6.)(0) J:' " b, L o <o <0, 0<p <1

f i1, 0=

It should be remembered that this formula holds
only if the initial digtribution f{z) is non-zero in the
e { to 1. For more general ranges ¢ to 3, the
resulits would be rather complicated.
The joint distribution of ¥ and gy may be obtained
from that of @, ¥ in {13) by the transformation T7

yamg (2 =)= (1—0)
i
y,=% (=" + ﬂ:'"}=—;- for42)

with Jacoblan -%: and inverse,

Ut gu=—gat i, =Yt ¥ {14)

Subatitution into (13) presents oo problem. The two
partial regions in {13} are transiormed as follows:

0 S J<m<1

first sub-region into .
0§, ﬂ{!f:‘_:z?
(15)

1 3

GEFREE ' U_{._#aiz

second sub-region into 3

0<y <1 —;, Eiﬁaﬁl

Discussion of moments and other properties is mosi
easily carried out in coopection with.the specific
populations discussed below, ]

To find the distribution of &' (=) the region B*
must first be expressed by changing the order of the
variables ¥, #, w s0 that the condition invelving 10 18
written last, permitting % and » to be integrated out.
The procedure is the same as determining new limits
when transformiog variables or changing the order
of intapration. ) )

The result of transforming the region sund iote-
grating out % and ¢ is

o= [ [+ [ [ ]o dudes
e AL [ o a0 am

D<w<l,

(16

where g=g{u.»0) is given by (12).



2
10 §—
\ plyy) = 12(1~4y,)
5—
o !
o 14 1

¥z

Frovaw 2. Freguency funciion for gy

b. Rectangular Univarsa
For a rectangular {sguare} universe
{13} becomes, with the aid of (14), (15),
1
11 —3y2—va), Ho XY S1—3p, 0Syaty ) 20

Pyl =

1
12A(—3yat-ahy BthStasl—ps, 0Sy g

(17)
g0 that the pdf of ¥, is

Plya)= 12_[ "1 —3y—ydyt

[,

—1201—4gs), if 0<y <3

o= 2yddys, if 0y, <q

ta ph is sketched in fig. 2. It is seen that
amaﬁmalues of the difference {z'—=x"') appear to be
overwhelmingly frequent in samplea of t.ﬁrae from a
rectangular populaticn, thus giving apossible intnitive
axplanation of the fact that the dispersion 8 much
less than in the casa of true duplicates,
Moments of this distribution are

E{yz}— 5 Elyh)= .
E{y.}=ﬁ-4"{k+1}{k+2}{k+3},

cr(m}=ﬁ-‘/%=o,u4s41 .

It should b recalled that these moments apply only

to sampling from:the rectangular (square) popula-
tion, in the form fiz)==1, 0 5251; and 0 alsewhere.
For the caae of a. 8 atrical rectangular population
with unit standard devistion, see sec. 3.2, d, (4}.

¢. Hormal Universa

Jince the limits are no longer 0 to 1, the distribu-
tion of ¥; has to be worked out anew.

For the sample of size three, the two functional
forma of yy=3{z"—z'") are

Tp— T

%r when Ty— 1 = Ty— Ty

Ty—
2

W= (18)

Ty
; when T—x = 23— I

Thie becomes, putting t:— ;=151 £3—2:=45,

%s., when &, < &;

%s,, when &, > g,
The desired distrihutmn will then be obtained from
‘iomt. df of 5, and & b t?ratmg out the abova
itions (18) eeparately and replacing the ''free™
¥ 2y
Thu ;l::-mt df of # and & is found by the usual
methad of transformation from the joint &f of the
basic ordered verinbles z,, z3, and z, as follows:
The transformation
Yo—12,=8§

Fyg=—Tz— &3
T +x3+x;= Hy
carries the joint df

f{mlj T, za-}dxudxzdza':(_?i;aﬂ G-i{*?+=;+=§} d:l:ld:t!gl‘f-:t:-.
— oSy r @

_i_; ]

into
g{s‘h &g, 33} dslda,dsa —_——

ry"_
R N ey
VLo @, o Lo

Integrating out & from— = to=gives
Risy, sdsdey=38 e Wt Dy b b cs )
b

0 53;"—'-:: e

We can then obtain the distribution of ¥, as
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fpdyr=| [ Moyeddedn],

[J:z = Msh sﬂ ¢ ds{l dgmiyg

_3 { f:a_ﬂ'i"""**"ﬂ sy 2yadys b

x

‘l-nﬂ—i(l;;'l'ir]“f"u!!}dst . 23& d-y'z}
Ay

Ei:'_ﬁe_l%fuﬁ_hﬂdt' dyts, 0 <ypp< =,
By

oo using the transformutions i=%{$:+:!h:|. 1=%{Ez 44

in the first and sceond terms respectively, and
combining. This change of variable in the mfinite
integral ia legitimate, for both old and new integrals
converge, and the transiorma.tmn g=3—y, from 2 to
¢ haa a continuous derivative (unity) which does not
vanizh ik the range of integration.

The first two moments of y; mvolve integrals of

the following types:

f J. yc-v da:dy-—-— (vﬂ—akr)

- ak'
f J e~ drdy= ﬂm arctan (Emi: Ve
in which
@=azi+dzy+tey’, A=dac—b>0, a,c0,

=k4me  g=aki+bk+e.

These values give

8—3v3_ 0 .29876
T

_ 63— 334‘

E(y)=
Viys= =().03508
o (g ="0.18720,
d. Comparison of v with other measures of hwo ohesrvatons
{1} “True duplicates” (sample size n=2).

For samples of 2, the closest pair {2, 2°) is simply

the entire sample:

=z 2 =m,
and

4 rr 1

¥ _da—m 1
2 = 2 ER”

Ye—

where &, will be used to denota the range of a sample
of n. In table b, #; {for samples of 2} ia denoted
by p (Part A, cols. 3, 6).

Hitce a main oh]eutwa i3 to make comparisonhs for
samples frem rectangular and from normal popu-
lations, it is first necessary to put them on & fom-
pa.ra.ble basis.”® The normal population studied ia
'meet.rical and heas siand deviailon unity.

he rectangular population with these same char-
acteristics of location aud seale is

"'"\'Eﬁxf;.ﬁr

1
glz)= iz

=0 otherwise,

singe the standard deviation of the rectangular
(square) population previously considersd iz +/12.
The quantities needed in the compariecns below
involving the rectangular distribution will be most
conveniently obtained by computing them for the
simple case of & squars distribution and then mult-

piring hy the scaie magnifying factor 12. Evi-
dently the statistic 15 will not be affected by the shift

in location of the population.
T]-n? results are there 23 s simply the range,
Tp=—Iy 1 _ _
Reclangulor wniverse gla)=1/4/12,— /32 <3}

and 0 alacwhere.
yg}_E (ﬁ-’a» xi)__-E (2 Rg :2_5_

Tp—¥1 Yy ‘1_ _
( - )—-1372 2 43=0.4083.

(From the distmbutlion of the range (R.)=
win— 1 ER-¥1—R,) for n=2, combined with a
traneformation which multiplies the scale of the
variable byy12.)

Normol universe  f(2)=(1{y2a)e-#2, —mw g w

11 13—0.5774

oly=o

Ely)—E (% —1/y7=0.5642

1

o — (”’_“") ——;)"=-:1.4253

(From Jones [9].}

(#) Lowest (or highest)™ pair out of thres (n==3)
For samples of three, z; <2, < x; wa have the fol-

lowing results for s =(r;—x)f2:

Beciangular universe g(z)=1/+12, — 3 <2 <4/3;
and 0 elsewhere

13 Thin uonaidmt[on Al wod arjam whon atudying tha stotbstlo g, bmus%imhz
aratho of langt ks wnadecied by ahanges In acale of the ttgu
W Higad tmf"”t Arlbndan iu In eanh ase aymmelrcal, the resulls for
tha Towesk an: wext poir sre Mot



E(*’;*1)=%-1f12=n,4330

. (*’;"')m‘fﬁgélfuﬂ.aam
(From Wilks [6].}
Normal universe  Fz)={1/v2x)e-t — g ew

E(ﬂ)=i=ﬂ.4231
2 4+x

Ey—Iy i g‘i‘ﬁ‘vrﬁ)!
ﬁ( 3 )—-(2— 16x =0.3379

{From Jones [9].)
{8% Half-range, % (23— (=3}

The analogous quantities which describe the spread
in the et of 3 are:

Rectangular universe  g{z)=1/12, — 3 <2 <+/3;

and 0 eleewhere.

Ty—Ty 1 11 _
E (—4———)=E (E Ry )= 52 12=0.4380

. (%)= J1/80)»12=0.3873

{From the distribution of the m B for n=13.)

The resson for using one-fo rather than one-
half the range runs somewhat as follows. The
distance (r;—=;) between iwo adjacent values in a
sample of 3 can fake values from zero all the way
up to the ra of all three. Thus, in a rough
average sense, thie diztance represents rome fraction
of the range, and it happens that in the cases we
have considered, thie fraction ie remarkably closely
given by ooe-half, so that half this distance, namely
g=¥{zy—m), i, in the same sense, given by ome-
Fourth the range,

Normal universe J{z)=(1/4/2x)e=*2, — 0z w.

B—a_
E 4

. (%)ﬁn,uﬂ

{¥From Jones [9].)

A
—=(1.42
o= 0.4231

{4) Closest pair in samples of three.

For comparison, moments of 2pm=2'—2z" =y, for
samaples of three are presented here based on the
moments of 4 found above (secs. 3.2, b, and 3.2,
¢} and aleo adjusted, in the cmse of the rectan-

gular universe, for moving the mean of the diztribu-
tion to the origin’and incressing the sczle by the

factor 412,

Hectangulor uniperse
43; and 0 elsewhere.

glx)=1/41%, — {32 <

E{y;}-:zE{y,]-——E-TlE J12=0.4330

. 1 {3
-rtya}=2w{ya}=2~ﬁ- 1.!5- 12=0.3354

Normal uniperse  flz)={1{y2nle—2"3,
— g w, ’

Ely)=2FE(y)=2(0.226761)=0.4535
ol =20{y)=2(0.18730)=0.3746

The reason for using twice ¥., rather than y,, for
cemparison with the previous values is logous to
that given in section 3.2, d, (3) for using one-
fourth rather than one-half the range. The restrie-
tion to the clesest pair means thet the distance
#'—z’’ cannot vary to the same extent as &:—a;, for
its size 15 hmited at most to helf the range, whila
¥a—&; can thke values up to the range of the sample,
Thus it is to bo expected thet ' —2", that is, 294,
is the quantity comparable to *’;", which i turn,
by the argument in section 3, 3.2, d., {3}, is compar-
able to ®_ .. Tt turns out that thesa relationships
ara eractly true in the casa of the parent (adjuated)
rectangular distribution, and remarkeably closa in
the ¢ase of the parent unit normal.

3.3. The Stabislic 3
As for w,, the disiribution of

2f ot
¥i= -;

in the general situation invelves o cum]illicatred urgu-
ment, not only because of the complexity of the
dmstribution function, but bLecause of the invalved
charactar of the repion over which the intepration
muat be performed. Therefore it iz not considered
profitable to discuss the properties of y; from a gen-
eral viewpoint, but its properties will be illustrated
for individeal universes, to show how they may be
derived in any given case.

. Hectanemlar Universs

We cannot use the joint df piw., &;ﬁ int the form
(17}, because 3 cannot be integrs out of the
region as written. It is therefore necessary to re-
verge the order of the variablea in the expression for
tha ragion. Tha result is :



4
4y (3— T <y i
1 3
plga=+ 2(1—24+ 293, ISVET L
41—y} {7y —4), %5?351- T
' P (¥y) : i
whose graph is sketched in fizure 3, { |
For the moments we hava | !
1 1
o i 1
—1 =L f1_ 0 1 I 3 1
Eyy—yp o *\/; 0.2622. i L3
As in Ect.ion 3.21]; b,ht.ha recta,})gu]ar distribution to ¥
which these apply is the square form f(»)=1,0 <2 <1, | Fiause 3. Freguency funciion af 1a fi eclangulor wniversd.
and 0 elsewhare. For the form with standard devia- e e
tion unity, see section 3.2, ¢, {4).

k. Hormal Universs
The statistic y; tokes the functional forms

x 4
PO l‘;“?, when 2, — 2, <x,—z;(l.e. 2,2 22,—2))
W=—ag —
Xt x _
1‘12‘ % when 23—, > 22— 2y fie 2 <2p—ry).

Ag a firat al;e}) in obtaining the distribution of 4, the
x

jomt df of «’ and 2" is determined from that of z,,

Ty, Lpe

Writing
Flznepede drde,=6 flx,)f(x) flxddadada,

—m Syl o

where, on the right-hand side, f(z) =%_.r*~r’, we
r

have, on integrating over the above conditione,

oo, xdrdar=s[ [ fadfedfmidn dudes four

T’

+o[ [, S seidn -d:sgfiz:];::::
=61 —F(22' -2 ) F(22° — ') da'da”, — o {27 Sx'<{ =,

whore

Ray=|_soa.
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The desired distribution is then derived by meana
of the transformation

_1 ! L
ya—E{z 4™

1
Y=g (&' —2%),
giving

ffﬂﬂd!{a—fm [‘I‘ f'ﬁa“ f f 3—8“] e BN N dy, - dys, — eyl =,

(21)

Alternotive derivation, The author iz indebted to
Professor J, Wolfowitz of Corpell University for
the following inieresting method of deriving the
above result,

The method is to take two of the three observe-
tions {which may be done in {5 ways) and express
the fact that theim the c]uc'av&st two by writing the
condition that the third iz at a preater distance
from aither one than the interval botwean the two
selectad.

This may be schematically shown as follows:

AEGICN RESION
WHERE A, WHERE lt
sy LIE AT LME

\ I"'—'l!';_“i"‘!';"‘l"'h"i‘— typ— j

:il ’1 I' n

T# ' nnd #'* are the closest pair, then )
(i} Half the distence between them is y,—= ;” ;

{ii) The abscissa of the mid-point between them is
_& =z,

i

2
{iii) The eondition that 27 and »" are the clozeat two
ie ligui?a,leut. to the condition: = lies to the left
or i liea to the right of B.

Combining condition (i) with the fact that,
either from the dia or by inverting the trans-
formation m 1) and {II), &' =g+ a0d 2™ =y —1,
gives for the joint df of w, 1,

Jya, y2) dys dya=

3 —i Kyat+ya2+irg—r) 3T ( J‘ dl‘. +

™ e LTS
J' &t

iy 1.?2:'
The odd moments of ¥ vavish by symmetry.

The even moments of ¥ require the evalustion
of integrals of the Lype

- - vtre
MG.P}=I_ J; f_’ gt~ M g duds,

ﬂdy: d&'i: 0 ‘_:'Fi{ ©, - m“':.ys“: =

Thiz may be accomplished by first putting £=0,
differentisting * with respect to p, and obtaining
an integral of the form

o Y I —ZyTm

37 b, P}—J‘_J; ye Ydyds="=—)
whera Q=hke*+ley+my?, A=dkm—P>0, k, m
Integrating back yields the value of ¢ois, p). Naxt,
differentiating thiz value with respect to ¢ gives the

even moments of ¥,
We thus obtain the results

Elyiy=0, k odd

] _
V(yaJ=E(y§}=§+¥=n,6373“
T
o{yx)=0.7H56
a. Comparisens with Other Muasnres of Two Okzervations

Sines for samples of two, i, is merely the midrange,
m=Y%{x;+x), we have the following results:’

{1} “True duplicates” {sample size =2}
Rectongular universe: glx)=1/12, — 3 <2< 3;

and 0 elzewhere.

Eiy)=0
cr{zrz}=-;-

Normal universe: f{z)=(1{2x e — g @,
E(y)=0

a{y,}— 2=0.7071

¥ This and l.hc nthur nmgc of the analvels in the cass of mult[r.lla lntasrals
¥ raethods aowkgila 10 the usual anss for slmpls

ilgnopnt ba due & R. Bath, who Gret dbeeoversd snd communicesbad
this wadun o the muiher alter deriving It by & different method, which the snthor
ban feund nasdol st othee polnds of this pagec, Eualwlmthﬂnl.}

I AR in Bstlom 30, 4t rslerenmhu'themeul' thumuhngulnr unlvetas b
Wilick [B; For (b poriial wolwetse, Jomes (8] lues for the reetangalar ol
vornr are compmied b{ ﬂndina tlm et of s B Ehe Bguare universe and
thin ad]peting by tha scabe faators dearvibed In acctbon 3.2, 4, (1)



(2} Lowest!'™ pair out of three (n=3)
Reclangular undiperse; 1t

E(ml;fe)=__q_.§;4=_o.4aau

:c:—l—:t:z) ‘/1112_ ,
350 —0-6423

Normal untverge:
K (Ifl‘l' Iy

E(:r]}m (—g—i-_;)=—u,¢231

$1+$1I . 1_9—21r§)*=
(42252 s

{3) Midraoge of all three measurements, %{21+ F
(=3}
Reetangular univerge: W

E($|;I3 —n

ml‘l‘;ﬂg)_ _3__
(—2 =4/ T=0.5477

Normaf wunigerge:

E(%"‘ =0

(""Jr”* ( J’ =0.6018

{4) Clozest pair in samples of three

For comparison, moments of (' +x'"f2, the
average of the closest pair out of tirea ara presented
hera, based on the moments of 3 found above {zeca.
3.3, a and 3.3, b.) and also adjusied, in the case of
the rectangular distribution, o the location and
peale factors used several times previously.

Rectangular uniperse; W

E(y)=0
o (=250 9083
Normal uniperse:
E(y)=0

3
a{ya}=@+:—§ =0.7086

' Anakpons resnlis for the blghest pair ors otdaleable fonl Syfmmetsy oom-

Hderatho
o 4 Aluated a3 alveady nuantiened in previons sections: gz w1415 = v'5 Sz5
7 and ¢ elsewhers,

L

e [ ——

M- o -

Ialribution of fhe ouﬂy:? velug g o semple af
thres from the rectonguler disfribudien

3.4. The Extreme Value x'

For the rectangular distribution we obiained the
joint density function (12) in section 3.2, &, above,
of «*, ", »’"". ‘This consisted of just the produet of
the individual density functione (unity for the rec-
ta.ngula.r universa), but defined cver a complicated -

appearing region. Following the principles eluci-
dated in that section, we obtain the 4f of &' by
first expressing the region suitably, then integratin
out = and . The result is given by equation (lt’g
“:]imh’ for the rectangular distribution, becomes, with

—w,

Bluwi=3 (w“—w—t—%):

Filaoze 4,

0=w=l, (22}

which i the parabola sketched in figure 4.

Althoogh considerable attention has been devoted
to the anowmslons values or outliers »1 or (3. for
samples of #) separataly, these have not, so far as is
konown to the author, been united into a singie
statiatic of tha iype z' . This, {29) actually exhibii
& disgiribudion of @A OUTLIER 44 d-ia:ﬁmfﬁ'ﬂm & [“one-
end”) extreme value 2, lov 1),

The moments of w are

E(w}=%= u{w}=;—u\?ﬁ=ﬂ+3lﬁ2

The joint distribution of w and 1, given without
proof, iz ae follows:

sw—y), 3w<HLn, 0wl

12y, <y, g, 0<w<l
Flnw)= < 1

12(—y), W+H<HRLL, 0<wsl

This distribution may be used to obtain the correla~

i

tion between ™’ and y,=% fx'+ ™), which turns

ont to be— 37889, or slightly under—3/8. This seems
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to imply & elight tendency for a pair of close, small
values ta & sample of 3 froin a re population
to be associated with & relatively large outlying value,
and conversely, for close high valves,

The distribution of the extreme value ='’ would
also be of inierest for the normal and other die-
tributions. Although the anslytical methods necea-
eary for handling the integrals encountered could be
developed and extended on the basia of the procedures
thus far given, this would not appear t0 be warranted
for the purposes of this paper,

4. Conclusion

Thie papet has developed methods for deriving the
exsct distributions and related properties of certain
statistics not heretofore coneidered which throw light
on some gspeects of the behavior of very emall samples
encountered in experimental laboratory work. These
statistics, deai%;mted ¥, ¥, ¥ depend not solely on
the order of the observations but also take their
relative cloreness into account. The aim was to
provide on]tg' the mathematical theory, for samples
of three, and present gnly the mora interesting results
#nd comparisons (summarized in table 1} and not
attempi to use the resulis s a basis for setting up
eriteria for the rejection of observations.

The results have some bearing on the old question
of the refection of cutlying ohservations. They show
that at least for the normal, rectungular, and right
triangular universes, for a sampie as small as three a
rejection criterion based on the relative gizes of the

O

two gaps formed by the three measurements is hardly
a satisfactory one, for high ratios between thess gaps

oecur with o quoney, as indicated in
table 2, even m three observations coms from
the same nniverse,
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