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Properties of Certain Statistics Involving the Closest Pair
in a Sample of Three Observations

Julius Lieblein

Triplicate readings are of wide occurrence in experimental work. Occasionally, how-
ever, only the closest pair of a triad is used, and the outlying high or low one discarded as
evidencing some gross error. The present paper presents a mathematical investigation
leading to precise determination of some of the biases that result from such selection. This
project was suggested by certain experiments involving random sampling numbers and analy-
sis of published chemical determinations. The theoretical findings agree closely with the
empirical results and imply that selected pairs not only tend to overestimate considerably
the precision of the experimental procedure, but also result in less accurate determinations.

1. Introduction

Triplicate determinations are fairly common in the
chemical laboratory inasmuch as a third one is occa-
sionally taken to indicate which of the other two is
more likely to be off the mark. A corollary of this
is that if only two of the three measurements are in
close agreement the worker is under strong tempta-
tion to discard completely the remaining distant one
on the ground that evidence of gross error is present.
A similar practice also appears to be encouraged by
instruction methods in quantitative chemical analysis
which grade students not only upon the correctness
of their results, made in duplicate, but also upon
their precision as measured by the difference between
the two results. Thus, a student might hope to im-
prove his record by quietly making a third, uncalled-
for analysis, give himself the advantage of the closest
two of all three, and omit to mention the remaining
one. This is a very striking case of the long-standing
problem of the rejection of outlying observations and
raises the statistical question of how estimates of the
mean and variability of analyses are affected by such
procedures. It is this question, rather than the re-
jection of outlying observations,12 that is emphasized
in the present investigation, although the rejection
problem is also touched on, in connection with the
first of the three statistics, yi} discussed below.

The author is indebted to W. J. Youden for draw-
ing his attention to this question and suggesting its
theoretical investigation when search of the statistical
literature indicated that this apparently simple
problem had not been considered heretofore.3

Accordingly, the present study was executed and
resulted in the present paper, which is purely a
mathematical treatment undertaken to verify and
extend certain sampling results, obtained by Youden
in an empirical investigation of the above question,
which were reported in the National Bureau of

1 Figures in brackets indicate the literature references at the end of this paper.
2 For information on the many aspects of outlying observations that have been

treated in the literature, the reader is advised to consult a recent article by F. E.
Grubbs [1], in which, in addition to discussing several new criteria for testing dis-
cordant observations, he presents a detailed bibliography of the problem. A
particularly comprehensive survey of developments prior to 1933 is provided in a
study by P. R. Rider [2] published in that year. See also the two papers by W. J.
Dixon [7, 8] and the one by G. R. Seth [10].

Standards Technical News Bulletin for July, 1949
[3]. The method of treatment was to study some
of the properties of two measurements that are
selected out of a sample of three according to a stated
criterion computed from the sample observations.
The statistics that define such properties are of more
general character than order statistics—that is, ob-
servations ordered according to size, such as the
largest value in a sample, the sample median, etc.
Whereas order statistics are widely treated in the
literature,4 the type of statistics being considered
here, which depend on features other than size, have
apparently received relatively little attention.5

This report is thus limited to the following three
questions, answers to which will serve to throw light
on the differences to be expected between taking two
measurements at random ("true duplicates") and
taking two measurements that are really part of a
random sample of three.6 (1) In a random sample
of three observations from a single (continuous)
population what values of the following ratio may
be considered significant: ratio of the gap between
the two closest values to the whole range of the
sample? (2) How does the range in a sample of
true duplicate measurements compare with the differ-

3 After this paper was prepared, the author received a copy of a manuscript of
an article by Franklin M. Henry of the University of California, Berkeley, en-
titled, "The loss of precision from discarding discrepant data". Thfc article has
since been published [11]. It presents no mathematical theory for triads, but
gives, among other interesting points, a discussion of an experiment in judging
10-second time intervals by a series of triplicate measurements in which the two
"closest" were averaged in each triad. The standard deviation of the mean of
such averages for 50 triads was 0.181 sec, whereas theory (table lb, Part B, col. 1)
gives (since the standard deviation of the whole set of 150 readings is <r=0.162
instead of the <r=l used in our table) the remarkably close value 0.7986X0.162=
0.129 sec for samples from a normal population and 0.9083X0.162=0.Jf,£7 sec for
samples from a rectangular population (col. 4). The author is obliged to Henry
for his kindness in making his paper available in advance of publication.

Attention is also called to a note by G. R. Seth [10] on the distribution of the
two closest among a set of three observations. Seth became interested in the
problem in the course of a discussion with the author during his visit to the
Statistical Engineering Laboratory in the spring of 1948. In this note he obtains
in general terms some of the results also given in the present paper and applies
them to the normal distribution. The author wishes to acknowledge that the
present paper has benefited from correspondence with Seth on the problem. (In
this connection see also footnotes 11 and 16.)

4 For a comprehensive survey of the literature on order statistics, see Wilks [4].
s The most directly relevant article known to the author is by J. W. Tukey [5],

in which he obtains tables relative to the distribution of the largest gap, rather
than the smallest, in samples of from 2 to 10 by experimental sampling from a unit
normal universe and also by analytical means.

• The answers to these questions are indicated in the tables as follows: (1),
tables 2 and la; (2) and (3), table lb. These tables, which are an attempt to
condense the main results of this paper, are summarized in section 2.
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ence between the two values in each of (a) the
closest pair out of a sample of three measurements,
(b) the lowest (or highest) pair out of such a sample,
and (c) the pair of extremes (highest and lowest
values) of the entire sample of three—as regards
several types of universes? (3) How do the means
compare in each case? It is not intended to con-
sider other problems that can arise, such as drawing
the sample from a mixed population, or adopting a
rule to omit the extreme measurement only when
the range of the three observations exceeds a specified
value, and utilizing all three of them otherwise.
Neither is it intended in this paper to go into any
other statistical questions such as estimation and
significance tests or more general decision problems.

2. Summary

The answers to the above questions involve pri-
marily the investigation of the distributions of the
three statistics, yu y2, and y3, whose main properties
are summarized in tables la and lb below and
compared with the results of both actual sampling
by making use of a table of random numbers, and
data on chemical analyses that appeared in the
chemical literature.7

The statistics yf are defined as follows. Let xu
x2, #3 be the sample of three observations arranged
in order of increasing magnitude:

Let now
X] <X2<XZ.

x', x", x'"

designate the same three observations rearranged so
that x' and x" are the two closest of the three and
# '>#" . Then the selected statistics treated are

x' — x x' — x' 2 / 3 = -
x' + x'

Results are presented, insofar as they have been
obtained, for the three parent universes, rectangular,

7 For additional comparisons with experimental data that came to the author's
attention too late for inclusion in the main body of the paper, see footnote 3.

right triangular, aiid normal, though not necessarily
in the same detail for each one.

The comparisons indicated in table 1 reveal the
following facts for random samples of three measure-
ments, where, unless otherwise stated, the statements
apply to samples from a normal or a rectangular
population:

1. The empirical sampling results, obtained prior
to the theoretical calculations, show fairly substantial
agreement with the theory. The chemical data from
experimental determinations reported in a chemical
journal and studied by W. J. Youden are likewise
in agreement.8

2. The statistic yu which characterizes the parti-
tion of the range by the middle item in a random
sample of three measurements, behaves remarkably
alike for samples from three different basic popula-
tions, the normal, rectangular, and right triangular
(table la). This suggests that this ratio statistic
will not be very useful as a criterion for discriminat-
ing between a normal population and some other
population.

3. A set of two observations selected by taking
the closest two out of three from a normal or a
rectangular population differs strikingly from other
pairs taken from the three or from a pair of true
duplicates, as shown by the following:

a. The average difference (as measured by y2)
between the selected pair is less than half that for
the true duplicates, and the same is true of the
variability of this distance as measured by the
standard deviation (table lb, Part A, Cols. 1, 3 and
4, 6). Furthermore, the difference between the
selected pair behaves (again in an average sense)
very much like half the difference between the two
lowest (or highest) in the full sample of three, and
(in the same sense) is similar to one-quarter the
difference between the two most extreme measure-
ments in the sample. The standard deviation of
the difference between the closest pair is, however,
comparable to the standard deviation of half the
range (table lb, Part A, Cols. 1, 2, and 4, 5).

b. The mean (yz) of a selected pair varies some-
what more than the mean of a true duplicate pair,
the average value of both these means being the

8 For other empirical evidence see footnote 3.

TABLE la. Characteristics of the ratio y\ of the distance between the closest pair to the range in a sample of three measurements

N, number of samples of 3 _

Probability density function

Expected or mean value
Standard deviation-

Normal population

Theory

(1)

3AA

0.2621
0.1428

Sampling
with

random
numbers

(2)

400

0. 2582
0.1421

Rectangular population

Theory

(3)

0.25
0.1443

Sampling
with

random
numbers

(4)

200

0. 2506
0.1612

Right triangular population

Theory

(5)

0.25
0.1443

Sampling
with

random
numbers

(6)

200

0. 2141
0.1480

Pub-
lished

chemical
data

(7)

75

0. 2573
0.1565
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same. Especially noteworthy is the fact that the
true average of the population is more accurately
estimated Dy using the two most discrepant observa-
tions of the three in forming an average, % (#i+£3),
than by taking the two that are most in agreement,
although neither method is as accurate as taking

the mean of all three (table lb, Part B, cols. 1, 4).
Thus, selection of measurements on the basis of close
agreement increases rather than decreases the true
error of measurement.

In addition to the above relationships the be-
havior of the outlying observation %'" is of interest

TABLE lb. Characteristics of other statistics related to the closest pair of measurements in a sample of 8
X\<X2<. . . <xn denote the measurements in a sample of n ordered according to size. If w=3, then xr and x", x'>x", denote the two closest measurements in the

sample (x\, X2, xz). The measurements are drawn independently at random from the populations designated. The rectangular population has been adjusted to unit
variance and centered at the origin. Exact values and distribution functions are given where practical. Where the interval of nonzero probability density is omitted
for a probability distribution, the variate is assumed to take all values from — oo to +°°. For fuller explanation see text.

Statistic

Probability density
function.

Mean

Other means for
comparison.

Standard deviation.

Other standard
deviations for
comparison.

Statistic...

Probability density
function.

Mean

Other means for
comparison.

Standard deviation.

Other standard
deviations for
comparison.

Normal population,

(1)

Closest pair in a sample of 3

(2)

Lowest pair Mna
sample of 3

(3)

Sample of 2 ("true
duplicates")

Rectangular population with unit variance,

' w

(4)

Closest pair in a
sample of 3

Vl2' 3~X<

(5)

Lowest pair a in a
sample of 3

(6)

Sample of 2 ("true
duplicates")

A. Statistics relative to the DISTANCE between two values

x>-x"=2y2=y>.

f 3V"3 f°° e-\W+v*)dt

I 0<f(3'<«>

E{y a') =0.4535

E(y r
a)=0.4451 (experimental

value b)

E(xz—x{)/<±= =0.4231

<r(yl) =0.3746

<r(xz-Xi)/2 = 0AU2

(^- ,0/2=,

ev"3 r°%-(3'2+s2),tt

0<S<oo

E(s) =-^==0.4231

~4V^

a (s) =5.3379

o(xz -Xi)/2=0.4442

(X2~Xl)/2=p

2 -V2

0<p<co

^ ( p ) = - ^ = « 0.5642

o-(p)= (1 -1 )*= 0.4263

xf-x"=2y2=y',

J - (yj_ ,)2
V 3 2

0<y?< V^"

2 4

£7(^3—£1) /4 =-^—

,(yi)=^:_0.3354

or (2:3 —2 î) / 2 =

"V15

(X2~ Xi)/2 — S

I

0<s<V"3"

E(s)=~-=0.4330

4

ff(8)=^=0.3354

a(X3—X\)I2=

10 ~

{X2-xx)l2=p

2

O<P<VT

E(p)= "y^=0.5774

0.̂ 23^= -yj,^ =0.4082

B. Statistics relative to the AVERAGE of two values

6 f00 C

*-V2TJ° J
where t ranges over (— <»,
-Zy2+yz)&nd^(Sy2+yz, «>);

E(yz) =0

E(yz) = -0.0335 (experi-
mental value b)

E(xi+X2+xz)/3=Ex=0

< r ( y 3 )-(Y+#)^0-7 9 8 6

<r (yz)=0.8098 (experimental
value b)

a(Xi+X2+Xz 3 - ^ _ _

= 0.5774

(xi+x2)/2=q

, ,

£;(?) = ^ = -0.4231

o-(?) =0.6244

<r (2:1+2:3)/2=0.6018

(xi+X2)/2=m

E(m)=0

(r(w)=V^=0.7071

(3:'+a:'0/2=y3

„
E(yz)=0

E(ii+Z2+Is)/3=0

. W = Vl=0.fl083

a (xi+Xz) 12=

^=-^==0.5774
V3

(a:i+a:2)/2=ff

, ,

ft d^ft

<r(,)=y|=0.6423

a(^i+^)/3=

V^O.5477

(*1+z2)/2=m

£;(7n)=0

o-(TO) =0.5

» The characteristics of the highest pair are obtainable from symmetry considerations,
b Values obtained by sampling experiments using a table of random normal deviates.
• These density functions have been omitted since they are rather complicated.
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and will be briefly considered.
Although the basic ideas present little difficulty,

the explicit values and probability distributions
needed in this paper often involve calculation of
multiple integrals over quite complicated regions.
The exact calculation of these integrals has usually
required much tedious manipulation, too lengthy
to warrant more than the briefest indication. A
detailed manuscript of these procedures is in the
possession of the author.

3. Derivation of Results; Descriptive
Properties

3.1. The Statistic yi

a. Distribution and moments in general

Let »i, x2, xz be the three observations, arranged
in order of magnitude, m a random sample of three
from a population with pdj (probability density
function) /(#), supposed continuous (and dif-
ferentiable as often as necessary), and suppose
/ (x) is nonzero in the interval (a, b) where either
or both endpoints may be at infinity. Then the
joint density function of Xi, x2, xz is [6]

p(xljx2xz)dxidx2dxz=S\f(x1)f(x2\f(xz)dxidx2dxZy

a<Xi<x2<xz<b. (1)

Letting x'>x" be the two closest observations, the
statistic yx may be written

Xz — X\

where

yn(xux2,xz) = ]

= l—yn(xhx2)xz)

(la)

are simply functions of the x's and will be used with
the arguments often omitted for brevity. Thus it is
required to find the distribution of the variate ylf
defined over 0<^/i<K, which takes different func-
tional forms, namely

yn(xux2ixz) if 0<yn(xi,x2,xz)<-

ux2,x3) if 0<yi2(xux2,xz)<-,

where yn, y12 are simply used as abbreviations for the
fractions in (la).

To find the distribution of y1} we have (in the
notation of the theory of probability), since the
events indicated on the right are mutually exclusive,

(2)

which is equivalent to

0, if F < 0

<t/12<F}, if 0<F< i
2*,

(2a)

The equation (2a) can be differentiated with respect
to Y to give the probability density function in the
form

i2), if 0<yn, 2/i2<2 = 0> (2b)

= 0, otherwise,

with yn and y^ replaced by yx in the result. Thus
the required distribution is reduced to those of sta-
tistics of the usual type.

To find pi (yn), apply the transformation9

x2=r—q(l—yn) (3)

xz=r

to (1), obtaining

h(yniq,r)dyndrdq=§qj(r—<fij[r—q{l—yn)]j{r)dyndrdq,

0<q<r— a, a<r<b, 0<yn<l (4)

whence the pdj of the variate yn is

j(r-q)j(r)f[r-q(l -yn)] dq dr

<1 . (5)

Since 2/12=1—2/n> ^ s density function is, similarity,

/ x Cb Cr~a

#2(2/12)= 6g/(r-
Ja Jo

0<7/1 2<l.

Hence finally (2b) gives

(6)

a JO

(7)

9 This is obtained by putting yn= —— > q=x$—x\, and r=xs.
Xz—X\
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where

(8)

as the general formula for the distribution of 2/1 for
a population with continuous pdff(x).

The above expressions appear to lend themselves
to but few general statements. Thus, it may be
seen from (7) and (8) that for a rectangular parent
population f(x) the distribution p(y{) of yx is rec-
tangular. Furthermore, yx will evidently be rec-
tangularly distributed for all parent distributions for
which the function <t>(y\) does not depend upon yh
that is, for which the function

depends at most upon r and q. If / is a linear
function (triangular or rectangular distribution),
this is seen to be true, for the 2/1's cancel out. Con-
versely, by differentiating with respect to yh it can
be shown that if 2/1 has a rectangular distribution,
then / must be linear, if differentiate.

For future use, it is desirable to obtain general
expressions for the moments, /xfc, of 2/1- In view of
(la), (2b), and (6) these are given by

M*= I y*p(yi) dyx= I 2/11̂ 1(2/11) dyn+Jo Jo

r*
I 2/i2^i(1—2/i2) dy 12

which, under the transformations
2/12=2 —

become

"=J.!(BKB^G+<)>
in which px is the pdj of the ratio

X2 — X\
X$ — X\

If the function p\{u) is one that is symmetrical about

u—-^y then /ZA; may be written, putting — —-t=s,

n
k=2

Jo
For certain symmetrical uaiverses, the distribution
of 2/11 has been investigated numerically by W. J.

Dixon [7] for samples of three and various larger
sizes as well.10

b. Rectangular universe

For the rectangular or uniform parent universe
given by

and zero elsewhere (this simple form is called the
"square" universe), the general expression (7)
becomes

) = 2\ f
Jo Jo

verifying that the ratio 2/1 also is rectangular.
The first few moments are

,

It is interesting to see whether values of the ratio
yx tend to depend on the spread, xz—xh of the sample
values.

It can be shown by the method used in obtaining
(4) that, for the rectangular case, the joint probability
density function of yh xh xz is

f(yi,Xi,Xz)=l2(x3—Xi), 0 < # I < £ 3 < 1 , 0 <?/!<—•

Since this is independent of yh it follows that the
ratio 2/1 is independent, not only of the range, but
also of both sample extremes xx and x3.

c. Triangular universe

In simplest form this is given by

f(x)=2x, 0<z<l

and zero elsewhere. Formula (7) here gives

Jo Jo

so that the distribution of 2/1 is identical to that of
the previous case.

10 In addition, Dixon has published a paper [8] that gives a thorough treatment
of a large number of measures that may be used in testing whether Jan outlying
observation (or several such) should be rejected. Of these statistics, the only
one that has any direct relationship to any studied in the present paper is,
for n=3,

_xn-xn_1^x3-x2t
~Xn —Xi X3—X1

This expression, which (for w=3) is the same as yn(=l—yn) in (la) above, is
mentioned by Dixon as a criterion for testing the upper outlier 2:3. The author
is obliged to Dixon for making his two papers available in advance of
publication.
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.05 .10

FIGURE 1. Distribution of ratio y\ in samples from a normal
and from a rectangular universe.

f(Vi)dyi=

x'-x"
Vl=xT^

Xr>X", XZ>X2>X\

d. Normal Universe

For j(x)=—= , — oo<#<co? (called the

unit or standard normal distribution or universe),
formula (7) becomes

(9)

or

A— 3 V 3

(1

This^consists of the arc of a Cauchy distribution
curve included between the left-hand inflection
point and mode, and is shown in figure 1. Several
percentage points obtained from the cumulative
distribution are presented in table 2.

TABLE 2. Percentage points of y\ for the unit normal

r'—r" R / 9 « ° —

* " = 4 ^ pr {Vl<vl)-± arctan ( &-

Probability, P,
that yi does not
exceed given val-
u e of y%

V\

0
1/11
1/6
1/3

P

0
0.1572
0. 2983
0.6369

Critical value, y°,
corresponding to
given
ityP

P

0
0.01
0.05
0.10
0.25
0.50

probabil-

•»?

0
0. 00603
0.02979
0.05874
0.14128
0. 23205

ii This distribution has also been obtained by G. R. Seth [10]. (See also foot-
notes 3 and 16).

The above, table bears out the fact that the ratio
yx is not a good criterion to use for the rejection of
outlying observations. Thus, a ratio as marked as
one-sixth or less, indicating that the outermost ob-
servation is at least five times as distant from the
middle one as is the remaining one, may be expected
(if the universe is normal) about 30 percent of the
time; even when the distances are in the ratio 10 to 1
or more, one by no means has a rare event—it may
be expected only a little less often than in one
sample out of six.

The moments are given by

=0.14280.

The correlation between the range and yx is found as
follows:

0.45352—(1.6926)(0.26209)
(0,88837X0.14280)

on making use of the fact that

from a result obtained on page 263 and

=^r^=l.69257
V

, (10)

= 0.78920,

from the exact values given by Jones [9].

3.2. The Statistic y2=%{x'—x")

a. General Formula for Its Distribution

The development of section 3.1,a. can be used
but will not be given here. It will be more fruitful,
however, to pursue an alternative method adapted
to the form of y2 and y%. This will readily yield the
joint distribution of y2i yz and thus simplify their
study.
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We first obtain the joint distribution of x', x"',
x'", where it will be recalled that xf and x" are the
two closest observations, x'>x", and xrn is the
remaining one, the outlying value, either above or
below the closest pair. Writing

=u, x'=v, x'"=w,

we have the transformation T given by

X2=V

and

X2 = U

xd=v

when x2—Xi<X3—x2,
i.e. u—2v+w>0 (Bt)

when x2—
i.e. v — 2u+w<0

We know the joint distribution of xu x2, x$, namely

xz)fa<x1<x2<xd<b) (11)

and desire that of u, v, w resulting from the transfor-
mation T. Since the regions of definition become
increasingly complex, we shall sacrifice some slight
generality by taking a=0 , 6 = 1, and reworking the
results whenever necessary. This will not be diffi-
cult once the general line of procedure has been
indicated.

Since the function in (11) is symmetric, the density
function for u, v, w remains of the same form. The
only difficulty is determining the region over which
it is different from zero. By somewhat tedious
manipulations, this region may be shown to consist
of the portions:12

2v—u<w<l,

0<w<2u-

so that the pdf for (u, v, w) is

g{u, v,w) =

= 0 elsewhere.

0<u<l

<t?<l , (R'2)

in Rf

(12)

The joint distribution of u(=x") and v(—x')
may then be obtained by integration:

12 Note that the variables u, v appear in reverse order in (Rif) compared with
(Rif). If the order is kept the same, it will be found that (Rtf) will need to be
further broken into 2 parts, (ifoO and (.R22'). The present order will therefore
be retained in the interest of simplicity. This need occasion no difficulty if
care ts used when integrating.

J2v

r2
)
Jo

», u<v < - (u+1), 0<u<l

(13)

It should be remembered that this formula holds
only if the initial distribution j(x) is non-zero in the
range 0 to 1. For more general ranges a to 6, the
results would be rather complicated.

The joint distribution of y2 and yz may be obtained
from that of u, v in (13) by the transformation U

U:

with Jacobian ——> and inverse,

U-1:u=—y2+yz, v=y2+y3. (14)

Substitution into (13) presents no problem. The two
partial regions in (13) are transformed as follows:

first sub-region into

0<y2<- k*
O<2/2<2/3,

second sub-region into

(15)

O<2/3<|

O<2/2<1—2/3, 7<2/3<l.

Discussion of moments and other properties is most
easily carried out in connection with, the specific
populations discussed below.

To find the distribution of x"/ (=w) the region R'
must first be expressed by changing the order of the
variables u, v, w so that the condition involving w is
written last, permitting u and v to be integrated out.
The procedure is the same as determining new limits
when transforming variables or changing the order
of integration.

The result of transforming the region and inte-

grating out u and v is

+ \gdu dw +

0 Jo Jhwj2v-wJ

+ \gdvdu,

where g—g(uyv,w) is given by (12).
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P ( y 2 ) = I 2 ( t - 4 y 2 ) '

0 1/4 1

FIGURE 2. Frequency function for y2.

h. Rectangular Universe

For a rectangular (square) universe

(13) becomes, with the aid of (14), (15),

so that the pdj of ?/2 is

2<i

(17)

12 P V2(yz-
J3y2

, if 0<y a <T>
4

-4i/2)2, if 0<2/<i -

Its graph is sketched in fig. 2. It is seen that
small values of the difference (a/—x") appear to be
overwhelmingly frequent in samples of three from a
rectangular population, thus giving a possible intuitive
explanation of the fact that the dispersion is much
less than in the case of true duplicates.

Moments of this distribution are

, ,

I t should be recalled that these moments apply only We can then obtain the distribution of y2 as

to sampling from/the rectangular (square) popula-
tion, in tlie form j(x) = l, O ^ x ^ l ; and 0 elsewhere.
For the case of a symmetrical rectangular population
with unit standard deviation, see sec. 3.2, d, (4).

c. Normal Universe

Since the limits are no longer 0 to 1, the distribu-
tion of y2 has to be worked out anew.

For the sample of size three, the two functional
forms of yi=\(xf—%") are

when x2—x1<Xz—x2

when x2—Xi>xs—x2.

This becomes, putting x2—#i=Si, xz—x2=s2,

— Si, when Si<s2

—s2, when Si>s2.

(18)

The desired distribution will then be obtained from
the joint dj of sx and s2 by integrating out the above
conditions (18) separately and replacing the "free"
Si by 2y2.

The joint dj of Si and s2 is found by the usual
method of transformation from the joint df of the
basic ordered variables xif x2, and x3 as follows:
The transformation

% x2
=s2

carries the joint dj

j(xu x2, xs,)d
3!

<x2<x*<C °°
into

, s2,
1 : « - * * .

0<S2<°°,— °°<S3<

Integrating out s3 from— •» to °°gives
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f (y 2) dy 2^=1 I h(sus2)ds2-ds1

LJ*2>al J

h(s1,s2)dsi-ds2
LJsl>*2 Js2=

2y2

ds2-2y2dy2+

f
J2y

s1-2y2dy2>

0 -it2

e dt.dy2,

on using the transformations t=-(s2-\-y2),t=-(s1

in the first and second terms respectively, and
combining. This change of variable in the infinite
integral is legitimate, for both old and new integrals
converge, and the transformation s = St—y2 from s to
t has a continuous derivative (unity) which does not
vanish in the range of integration.

The first two moments of y2 involve integrals of
the following types:

Jo }ky
 ye dxdy= warctan ( < & ; - V T

in which

Q=ax2+bxy+cy2, A=4ac — l

b

a, c>0,

These values give

E(y2)=®~3^=0.22676

d. Comparison of y2 with other measures of two observations

(1) "True duplicates" (sample size n=2).

For samples of 2, the closest pair {x", x') is simply
the entire sample:

= xl9
and

x'-x" x2-

where Rn will be used to denote the range of a sample
of n. In table lb, y2 (for samples.of 2) is denoted
by p (Part A, cols. 3, 6).

Since a main objective is to make comparisons for
samples from rectangular and from normal popu-
lations, it is first necessary to put them on a com-
parable basis.13 The normal population studied is
symmetrical and has standard deviation unity.
The rectangular population with these same char-
acteristics of location and scale is

"x V12

= 0 otherwise,

since the standard deviation of the rectangular
(square) population previously considered is -^12.
The quantities needed in the comparisons below
involving the rectangular distribution will be most
conveniently obtained by computing them for the
simple case of a square distribution and then multi-
plying by the scale magnifying factor •̂ 12*. Evi-
dently the statistic y2 will not be affected by the shift
in location of the population.

The results are (here 2y2 is simply the range,

Rectangular universe
and 0 elsewhere.

_
g(x) =1/^12, — V3^#5^

=E (i ft)-! • I •.12 = 0.5774

= 0.4082.

(From the distribution of the range p(Rn) =
n(n—l)R^~2(l—Rn) for n=2, combined with a
transformation which multiplies the scale of the
variable byyi2.)

Normal universe f(x)=(l/V27r)e-x2l2f _ 0 0 < x < 00

=(Ky=°-4263

(From Jones [9].)
{$) Lowest (or highest)14 pair out of three (n=3).

For samples of three, Xi<x2<Xz, we have the fol-
lowing results for s = (x2—x1)/2: __ __

Rectangular universe g(x)= 1/Vl 2, — -y[%< x < V3;
and 0 elsewhere

13 This consideration did not arise when studying the statistic yu because, being
a ratio of lengths, it is unaffected by changes in scale of the parent population.J* Since the parent distribution is in each case symmetrical, the results for
the lowest and highest pair are identical.
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E = 0.4330

3X12

(From Wilks [6].)
Normal universe

Z=0

(From Jones [9].)

(3) Half-range, - {xz—Xi)(n=S).

The analogous quantities which describe the spread
in the set of 3 are:

Rectangular universe g{x) = 1 / V12, — V3 < # < V$;
and 0 elsewhere.

(From the distribution of the range p(Rn) for n=3.)
The reason for using one-fourth rather than one-

half the range runs somewhat as follows. The
distance (x2—Xi) between two adjacent values in a
sample of 3 can take values from zero all the way
up to the range of all three. Thus, in a rough
average sense, this distance represents some fraction
of the range, and it happens that in the cases we
have considered, this fraction is remarkably closely
given by one-half, so that half this distance, namely
s=}£(x2—#i), is, in the same sense, given by one-
jourth the range.

Normal universe /(z)=(l/V27r)6-*2/2, —

(From Jones [9].)

(4) Closest pair in samples of three.

For comparison, moments of 2y2=x'—x"—y2 for
samples of three are presented here based on the
moments of y2 found above (sees. 3.2, b, and 3.2,
c.) and also adjusted, in the case of the rectan-

gular universe, for moving the mean of the distribu-
tion to the origin* and increasing the scale by the
factor <J\2.

Rectangular universe
S't and 0 elsewhere.

g(x)=l/Vl2, —^S<x<

= 2-± VT2-0.4330

) = 2 ~ ^ / | - 1 2 = 0.3354

Normal universe J(x)=(l/-y/2Tr)e-x2/2
1

The reason for using twice y2, rather than y2, for
comparison with the previous values is analogous to
that given in section 3.2, d, (3) for using one-
fourth rather than one-half the range. The restric-
tion to the closest pair means that the distance
x'—x" cannot vary to the same extent as x2—x1} for
its size is limited at most to half the range, while
x2—Xi can take values up to the range of the sample.
Thus it is to be expected that x'—x", that is, 2y2,

is the quantity comparable to • 2
 o -1, which in turn,

by the argument in section 3, 3.2, d., (3), is compar-

able to 3 * . It turns out that these relationships

are exactly true in the case of the parent (adjusted)
rectangular distribution, and remarkably close in
the case of the parent unit normal.

3.3. The Statistic y3

As for y2, the distribution of

in the general situation involves a complicated argu-
ment, not only because of the complexity of the
distribution function, but because of the involved
character of the region over which the integration
must be performed. Therefore it is not considered
profitable to discuss the properties of yz from a gen-
eral viewpoint, but its properties will be illustrated
for individual universes, to show how they may be
derived in any given case.

a. Rectangular Universe

We cannot use the joint df p(y2, yz) in the form
(17), because y2 cannot be integrated out of the
region as written. It is therefore necessary to re-
verse the order of the variables in the expression for
the region. The result is
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2(1-22/3+22/1),
3

whose graph is sketched in figure 3.
For the moments we have

=4-%/^=0.2622.

As in section 3.2, b, the rectangular distribution to
which these apply is the square form/(#) = 1, 0 <x < 1,
and 0 elsewhere. For the form with standard devia-
tion unity, see section 3.2, c, (4).

FIGURE 3. Frequency function of yz for a rectangular universe.

b. Normal Universe

The statistic yz takes the functional forms

^ when x2—Xi<Xs—x2(i.e. xs>2x2—Xi)

2 3; when #2—#i>#3—x2(i.e.Xi<2x2— -
(19)

As a first step in obtaining the distribution of yz, the
joint dj of xf and x" is determined from that of xi,

Writing

f(x1,x2,xz)dx1dx2dx3=§f(x1)f(x2)f(xd)dx1dx2dxd,

wewhere, on the right-hand side, j{x) =

have, on integrating over the above conditions,

g(x',x")dx'dx" = (

+ 6 I j{xi)j(x2)j(xz)dxi • dz2d:z3 L2=^
LJ^i<2^2-^3 Jar3=a;'

(20)

where
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The desired distribution is then derived by means
of the transformation

giving

r r r + p r " (21)

Alternative derivation. The author is indebted to
Professor J. Wolfowitz of Cornell University for
the following interesting method of deriving the
above result.

The method is to take two of the three observa-
tions (which may be done in CJ ways) and express
the fact that the}^ are the closest two by writing the
condition that the third is at a greater distance
from either one than the interval between the two
selected.

This may be schematically shown as follows:
REGION
WHERE X,
MAY LIE

REGION
WHERE X 2

MAY LIE

If x' and x" are the closest pair, then

(i) Half the distance between them is y2

(ii) The abscissa of the mid-point between them is
x' + x"

(iii) The condition that x" and xf are the closest two
is equivalent to the condition: X\ lies to the left
of A or Xs lies to the right of B.

Combining condition (iii) with the fact that,
either from the diagram or by inverting the trans-
formation in (i) and (ii), x'=yz-\-y2 and x"=yz—y2,
gives for the joint df of yz, y2,

dt+
3 -
— e
7T

r°° e~^ \
—= dt) 2dyzdy2) 0<y2<co}-

Jv3+3v2 ~J2iT /

The odd moments of y% vai)ish by symmetry.
The even moments of yz require the evaluation

of integrals of the type

/

too /»oo S*py+z

This may be accomplished by first putting k=Q,
differentiating 16 with respect to p, and obtaining
an integral of the form

ye~Qdydz=
2-y/Tm

dp

where Q,=Jcx2-\-lxy+rny2, A=4km—Z2>0, k, m>0.
Integrating back yields the value of 4>o(a, p). Next,
differentiating this value with respect to c gives the
even moments of yz.

We thus obtain the results

E(y$)=0,kodd

4TT

c. Comparisons with Other Measures of Two Observations

Since for samples of two, yz is merely the midrange,
m=%(xi-\-x2)i we have the following results:17

(1) "True duplicates" (sample size n=2)

Rectangular universe: g(x)= 1/V12, — -yJS < x < V3;
and 0 elsewhere.

E(ys)=0

Normal universe: f(x)=(l/-j2T)e~^/2,—

^\yr2 = 0.7071

is This and the other steps of the analysis in the case of multiple integrals
may be shown to be valid by methods analogous to the usual ones for simple
integrals.

" Acknowledgment is due G. R. Seth, who first discovered and communicated
this value to the author after deriving it by a different method, which the author
has found useful at other points of this paper. (See also footnote 3.)

17 As in section 3.2, d, the reference for the case of the rectangular universe is
Wilks [6]; for the normal universe, Jones [9]. The values for the rectangular uni-
verse are computed by finding the moments of yz for the square universe and
then adjusting by the location and scale factors described in section 3.2, d, (1).
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(2) Lowest18 pair out of three (n=3)

Rectangular universe:19

E = -0.4330

Normal universe:

(3) Midrange of all three measurements, ^

(n=3)

Rectangular universe:19

Normal universe:

V 2
) = = l i ~ 4 '= 0 - 6 0 1 8

(4) Closest pair in samples of three

For comparison, moments of yz=(x'-\-x")/2, the
average of the closest pair out of three, are presented
here, based on the moments of 2/3 found above (sees.
3.3, a and 3.3, b.) and also adjusted, in the case of
the rectangular distribution, to the location and
scale factors used several times previously.

Rectangular universe:19

Normal universe:

E(ys)=0

" Analogous results for the highest pair are obtainable from symmetry con-
siderations.

*• Adjusted as already mentioned in previous sections: g(x)
yii; and 0 elsewhere.

FIGURE 4. Distribution of the outlying value in a sample of
three from the rectangular distribution

3.4. The Extreme Value x'"

For the rectangular distribution we obtained the
joint density function (12) in section 3.2, a, above,
of x', x", x"f. This consisted of just the product of
the individual density functions (unity for the rec-
tangular universe), but defined over a complicated
appearing region. Following the principles eluci-
dated in that section, we obtain the dj of xnt by
first expressing the region suitably, then integrating
out xf and xn. The result is given by equation (16)
which, for the rectangular distribution, becomes, with

(22)

which is the parabola sketched in figure 4.

Although considerable attention has been devoted
to the anomalous values or outliers X\ or x3 (xn for
samples of n) separately, these have not, so far as is
known to the author, been united into a single
statistic of the type xftf. Thus, (22) actually exhibits
a distribution of an OUTLIER as distinct from a ("one-
end") extreme value xx (or xz).
The moments of w are

The joint distribution of w and 2/3, given without
proof, is as follows:

122/3,

0<w<l

0<w<l12(1-2/3), •

This distribution may be used to obtain the correla-

tion between xtn and 2/3=0 (%fJr%")i which turns

out to be— .37689, or slightly under—3/8. This seems
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to imply a slight tendency for a pair of close, small
values in a sample of 3 from a rectangular population
to be associated with a relatively large outlying value,
and conversely, for close high values.

The distribution of the extreme value %'" would
also be of interest for the normal and other dis-
tributions. Although the analytical methods neces-
sary for handling the integrals encountered could be
developed and extended on the basis of the procedures
thus far given, this would not appear to be warranted
for the purposes of this paper.

4. Conclusion

This paper has developed methods for deriving the
exact distributions and related properties of certain
statistics not heretofore considered which throw light
on some aspects of the behavior of very small samples
encountered in experimental laboratory work. These
statistics, designated yh y2, y% depend not solely on
the order of the observations but also take their
relative closeness into account. The aim was to
provide only the mathematical theory, for samples
of three, and present only the more interesting results
aod comparisons (summarized in table 1) and not
attempt to use the results as a basis for setting up
criteria for the rejection of observations.

The results have some bearing on the old question
of the rejection of outlying observations. They show
that at least for the normal, rectangular, and right
triangular universes, for a sample as small as three a
rejection criterion based on the relative sizes of the

two gaps formed by the three measurements is hardly
a satisfactory one, for high ratios between these gaps
occur with surprising frequency, as indicated in
table 2, even when all three observations come from
the same universe.
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