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Entropy Changes in Rarefaction Waves * 
Robert F. Dressier 

Frictional flow of a polytropic gas is investigated for centered rarefaction waves. En­
ergy balance is maintained by assuming that mechanical energy loss due to frictional force 
reappears as heat. Entropy behavior at the wave front is discussed. The nonhomogeneous 
linear system of partial differential equations with variable coefficients for first-order fric­
tional effects is derived. Utilizing the geometrical similarity of the Mach lines, the func­
tional form of these quantities is ascertained, which permits explicit solutions of the boundary 
value problem. The expansion procedure is singular at the wave front, and results are not 
applicable there. First-order effects are expressed as polynomials plus terms singular at 
the wave front. Results are compared with expressions obtained when heat generation 
due to frictional force is neglected. 

1. Introduction 

Equations for one dimensional, unsteady flow of a compressible gas permit explicit solu­
tion for centered rarefaction waves, such as occur in shock tubes or pneumatic control circuits. 
For some applications, however, it becomes important to include also the complications re­
sulting from frictional dissipation. This matter is discussed here in two ways, first with the 
simplifying assumption that the frictional effects consist merely in a retarding force, and 
second, by the more complete consideration that includes the resulting heat generation and 
accompanying change in entropy. This means that the mechanical energy destroyed by the 
retardation force reappears as heat energy, resulting in additional expansion. The simpler 
flow description without heat generation will be referred to as model A, and the second, more 
accurate, one as model B. The equations for steady frictional flow in model B have been 
studied and yield energy theorems and an extended form of Bernoulli's theorem [l],2 but knowl­
edge of the unsteady flows appears to be restricted mainly to a few isolated numerical calcu­
lations. 

A centered rarefaction wave is perhaps the most basic pattern in unsteady flow; the present 
paper derives solutions for first-order dissipative effects in this unsteady wave using the full 
system of equations of model B, and compares results with corresponding ones for model A 
(which were previously published by the author [2] as a supplementary result in a study of 
shock tubes with varying cross section). 

A recent paper by Ludford and Martin [3] has discussed anisentropic effects in centered 
simple waves. They consider flows where the specific entropy varies from particle to particle, 
but remains constant for a given particle. In frictional flow, however, the specific entropy 
for a given particle must vary with time, and a centered rarefaction wave cannot remain a 
simple wave. 

Consider a polytropic gas at rest for time t < 0 in a duct of uniform cross section, filling 
the duct to the left of a diaphragm where x < 0 , and with a vacuum initially at i > 0 . Heat 
exchange between the gas and the duct, heat conduction and radiation, and viscous effects are 
disregarded. When the diaphragm is removed at t=0, a centered rarefaction wave begins. 
Dimensional quantities are denoted by bars in order to define the unbarred dimensionless 
quantities to be used subsequently. Before flow, the gas state is described by sound speed 
Co, mass density p0, and temperature To; after flow we have velocity u, local sound speed c, 
mass density p, and pressure "p. 

For model A, assuming no internal heat generation and no entropy changes, the equation 
of state can be written in forms 

^ I V , c^yA^-^yRT, (1) 

1 This research was supported by the Office of Naval Research, USN. 
2 Figures in brackets indicate the literature references at the end of this paper. 
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where 7 is the adiabatic exponent, R the gas constant, T the temperature, and A* is a known 
constant (consistent with the assumption here of no entropy change). In this simpler model, 
the friction produces merely a retarding force per unit mass of magnitude \u2 where X is the 
known friction factor. There is some question concerning the constancy of this coefficient for 
frictional flows that are highly unsteady; this question is discussed by Schultz-Grunow [4], 
Jenny [5], and others. Here it is considered to be a constant. 

Introducing dimensionless_(unbarred) variables defined by x=x/D, t=(c0/D)t, u=ufc0, 
c=lc[c0, p=~fi/~fi0j \=D\ where D is some length associated with duct cross section, the momen­
tum and continuity equations for model A are 

2 2 
CUr + -_ r UCX + -—- C«=0 7—1 x 7 - 1 

(2) 

for the two unknowns u (x,t) and c (x,t); and the energy equation is neglected. 
In deriving equations for model B one must take account of the mechanical energy lost 

through the action of the retarding force \u\u\. The action of a body force cannot itself di­
rectly change entropy; however, if a term is included in the energy equation for an amount 
of generated heat equal to the lost mechanical energy, this heat will change the specific en­
tropy. In this way, the energy equation becomes expressible directly in terms of the friction 
coefficient. The equation of state for model B now includes the entropy dependence, 

p=A(s)^, A(s) = ( 7 - l)elf-f<>/e% c*=yRT$,I) (3) 

where ~cv is specific heat at constant volume, s is the specific entropy (entropy per unit mass) 
and ~s0 is a constant with a value depending unon the entropy level adopted. Letting dimen-
sionless specific entropy s be defined by s=(T0fcQ

2)s, the momentum, continuity, and energy 
equations for model B become, respectively, 

ut-\-uux 7 - 1 
ccx=—\u\u\-\-c2sx 

cux- 7 - 1 
UCr 

2 _ \u\l 

7—1 C 

st+u>sx=\ y-

(4) 

for the three unknowns u(x,t), c(x,t), and s(x,t). We set s = s=0 for the gas when initially at 
rest, and the equality 

A*=A(0) = (y-l)e-J°rc< (5) 
determines the constant s0. 

2. Characteristic Equations 

The Mach lines for model B are defined by the system of characteristic equations equivalent 
to the totally hyperbolic system (4). These consist of three families of real curves with direc­
tions given by 

dx 
f , : di=u~c 

dx . 
ft: Tru+c 

dx 

(6) 
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FIGURE 1. 

which are respectively the backward sound path, the forward sound path, and the particle 
trajectory (see fig. 1). The corresponding differential relations along each family are 

f»: d(u-^c)+cds=-\u\u\(l + ly-l}f) 

fc: d (^+~i c )~c d8=-\u\u\ ( l - [ 7 - l ] *) 

JV d8 = \£±dt. 

(7) 

These equations are used in [6] as the basis for a discussion of a numerical computation on a 
rarefaction wave in a shock tube. 

3. Entropy Behavior at the Wave Front 

From the above equations and the equation of state (3), the behavior of s at the forward 
wave front where p=0 can be inferred, consistent with the assumed model for the flow. For 
notational simplicity and to permit numerical results, we now specialize the gas to be air with 
7 = 7 / 5 ; however, the same arguments will apply and analogous solutions can be derived for 
any other admissible value of 7. 

If ~s0 is chosen as indicated and the relation 7 = 1 +R/cv, is used, we obtain the dimensionless 
equation of state in the form c2=ey{y~1)spy~1, which for air is 

P=e (8) 

On the wave front curve where p=0, this permits two possibilities: either (a), s remains finite 
and hence c=0 there, or (b), s becomes infinite and c is not known in advance. If s were finite 
and continuous and c vanished there, then by the third equation in (7), the rate of change of s 
along the wave front would be everywhere infinite as U5*0 there. This follows from the fact 
that the wave-front locus is also a particle trajectory and therefore a f3 Mach line. Therefore 
s must actually be infinite on the wave-front curve, and c is not determined there by this argu­
ment. Because s is entropy per mass, this does not necessarily imply that entropy per volume 
becomes infinite at the wave front for this model. 

4. First-Order Effects 

By setting up asymptotic expansions of form 

v(x,t,\)~v%x,t)+VA(x,t)\+ . . . (model A) 

v(x,t,\)<^v0(x,t) + VB(x,t)\+ . . . (model B) 
(8) 
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a perturbation scheme will be defined to give information for small values of X. The quantities 
v(Xjt,\) represent each unknown u,c,s, and their various first derivatives. The unperturbed 
centered rarefaction wave is the known simple-wave solution 

u°=5(l+x/t)') 

=0 

(10) 

which when X=0 satisfies system (2) for model A and system (4) for model B. The first-order 
terms for model A are UA, CA, (and SA=0) and have been published in [2]. Now we proceed 
to solve the more complicated problem for UB, CB, and SB and to compare these with the 
previous results. 

The expansion s^0-\-SB(z,t)\Jr . . . shows at once that the perturbation procedure for 
model B cannot be expected to retain validity in the neighborhood of the forward wave front, 
since s(x,#,X)=°° for any X>0 on the wave front whereas s(x,t,0) = 0 there. The results 
therefore will not apply in the neighborhood of the forward wave front where a type of boundary 
layer effect occurs. A separate analysis would be required in that region, possibly similar to 
the application of the Pohlhausen method as used by Whitham [7] for a water wave problem. 
There would be little justification for it in this problem, however, because the model assumed 
for frictional dissipation would in any case become inaccurate in this region of extremely low 
density. (A singular situation does not occur in the perturbation for model A, In that case 
there is no edge layer effect, and results hold throughout the full wave; but on the other hand, 
the basic model itself is everywhere less accurate than model B.) 

When expansions of type (9) are inserted into system (4), after using (10), the first-order 
terms satisfy the system: 

_ ~ \ 2 (5t—x) 
t2 &B-

30(t+x) 
t 

UB-36Uf 30(5*-s) 
t 

CB 30r 7 B , 3 0 ^ , 25(t+x)2 

=0 

(at x) TTB , 2o\t~\-x) /QB j _ QA/^B 5 TJB\5 ryB 175(r + x) 
— p - Ux+ t Lx+MCt-jU + T C ~6tH5t_xy 

5 « + ») OB | fiOB 125« + S)« 

(11) 

The solution of these equations that is sought must satisfy the conditions [7B=CrB=ASrB=0 on 
the straight line t——x, (t>0). This nonhomogeneous linear system has the same character­
istic curves as the solution u°, c° plus its particle trajectories. By studying these curves one 
can infer an easy procedure for obtaining the desired functions. These curves in the flow 
wedge are 

l < m < 5 

t\2/B 

f?: x=m t, 

t\s'« 

0 < a 

0 < a 

(12) 

where each equation defines a one-parameter family of curves over the range of a parameter as 
indicated. The f° and f? curves emanate from the back wave line x=—t at a point {—a,a) 
for any a^>0 (see fig. 2). Writing f? as (x/a)=m(t/a), one sees that the coordinates of an 
intersection point of a fixed f? curve with any f§ curve must be proportional to the parameter a. 
Therefore as the parameter a is varied, the quantities t/a and x/a at such intersection points 
remain constant as we progress along a fixed fj ray. Likewise an analogous situation will 
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F I G U R E 2. 

apply for intersections of f§ curves with a fixed fj ray. This geometric similarity of the char­
acteristics can be employed to find the functional form of the desired solutions UB, CB, SB. 
The characteristic relations associated with (12) are 

fi: *p.+5C-)-(^)«>--( i | | t«g.+?5g iV)* 

5-0. / 7 Q B _ 1 2 5 ( ^ + X ) 3 J/ 

(13) 

The last equation does not contain unknowns on the right side and could therefore be integrated 
along any f° curve. If this were done, using the third equation in (12) and the geometric 
similarity, it is easily seen that it would lead to a relation of the form SB/a=F3(t/a) when 
SB = 0 a t the origin. Because t/a is constant along a f? ray, SB is proportional to a, and hence 
to t there; the functional form must then be SB(x, t)=L(m)t. Using this result for dSB in the 
second equation of (13), by analogous argument applied to the f£ curves, it follows that UB + 
5CB=F2(m)t. Finally, we see that if we integrate the first equation of (13) along any f? ray 
(where m = constant), we would have (^T8—5CB) proportional to t if the quantity 5(f/B—CB)/3t 
were a constant along the ray. Then it would follow that UB and CB would separately be pro­
portional to t also. But in that case, 5(C7B—CB)/3t would actually be constant as desired. 
There these considerations indicate the existence of a solution to (13) and (11), vanishing at the 
origin as required, with the functional form f(m)t for each unknown U3, CB, and SB. This 
information now permits immediate solution of the original system (11), as follows: 

First, system (11) is transformed through use of the new independent variables m and t, 
putting UB(x, f) = U*(m, t), and likewise for the other unknowns. Then setting U*=h(m)t, 
C*—k(m)t, and S*=L(m)t leads immediately to a nonhomogeneous system of three ordinary 
differential equations for h, k, and L. Although this system contains variable coefficients, it 
can nevertheless be solved exactly. The particular solution satisfying the conditions h{—\) = 
Jfc(—1)=Z( —1)=0 is then finally obtained to give the first-order effects for model B. 

t 48 L 
5 f(5-m)7 

72,576 ' 54 
— ( 5 - m ) 3 - 1 5 ( 5 - m ) 2 + 1 0 8 ( 5 - m ) + ( l + m ) 2 - ^ -

90 . 7(1+m)3' 
( 5 - m ) ' (5 - m ) J 

t~lZb\_2,m,2S0 5{b m)+6 7 ( 5 - m ) + ( 5 - m ) 2 } 

K14) 
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F I G U R E 3. 

For comparison of these results with the corresponding expressions for the simpler flow 
model, we list below the expressions obtained in [2] for model A: 

T=lk [I (5-™)3-5(5-m)2+36(5-m)-84] 

^ = A _ R ( 5 - m ) 8 - 1 0 ( 5 - m ) 2 + 7 2 ( 5 - m ) - - 1 6 8 + 3 ( m + l ) 2 l 

SA 

=0. 

(15) 

The expressions in (14) have singularities at m=5, at the forward wave front for the unperturbed 
flow. This is to be expected in view of the previous remarks concerning the entropy behavior 
at the forward wave front that makes the perturbation procedure singular. On the other 
hand, the expansion for model A does not possess this singular property, and the expressions 
(15) do not become infinite at m=5. A comparison of (14) with (15) must be restricted to a 
region that excludes the forward wave-front zone. Figure 3 gives the numerical evaluation of 
the quantity SB/t. When drawn on a semilogarithmic plot, this curve is almost linear over the 
middle range l < m < 4 , and for convenience can be accurately approximated there by the 
expression .63 exp (1.95 m). Figure 4 compares the behavior of CJB/t with UA/t. In the first 
half of the flow zone, the two models predict almost identical results, but further on the velocity 
becomes higher for model B. In equations (4), as s x >0 for this case, the effect of the entropy 
term in the momentum equation is to diminish the total resistive force, and this by itself would 
increase the velocity. In the continuity equation, however, the extra positive term on the 
right side would have the effect by itself of decreasing the velocity in the back portion of the 
flow zone, because this term is analogous to the term that would be present for a converging 
duct in quasi-one-dimensional flow, as derived in [2]. Evidently the fact that the velocity 
term for model B is slightly below the model A curve in the beginning of the flow zone, is 
due to the extra term in the continuity equation dominating over the entropy term in the 
momentum equation until sx grows sufficiently large to raise the velocity. 
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The first-order corrections for the local sound speed c are shown in figure 5 for the two 
models. In this case there is no resemblance in the behavior of the two curves, as the sound 
speed, which is proportional to the square root of the temperature, is more directly sensitive 
than the velocity to the internal heat generation assumed in model B. 

Finally we use our results for sound speed and entropy in the two models to calculate the 
corrections for the dimensionless density P=~PI"P^ The dimensionless equation of state of air 
for model A corresponding to (1) is p=c5. After inserting expansions here, the coefficient of X 
in the expansion of type (9) for p is then equal to 5(c°)4CA. This quantity, after division by t, 
is shown in figure 6. For model B, when corresponding expansions are inserted in (8), the 
coefficient of X in the p expansion is equal to 5(c0)4 [CB— (7c°£B/25)]. This quantity, after 
division by t, is likewise shown in figure 6, and one observes that the widely different results 
of the two models for sound speed and entropy nevertheless combine to produce density cor­
rections that are in close agreement. The pressure and temperature behavior for the wave can 
be obtained directly from (3) using the results already presented. 
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