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The independent Hall, magnetoresistive, and thermoelectric coefficients for a tetragonal 
crystal have been tabula ted and geometric configurations for their experimental measure­
ment have been determined. These coefficients have been calculated on assumptions of 
several simple ellipsoidal models, in the range of nondegenerate statistics. Implications 
of experimentally observed isotropy or anisotropy of t ranspor t properties on the s t ructure 
of t he energy surfaces are noted. 

1. Introduction 

Detailed studies on the transport properties of 
rutile require tabulations of independent tensor 
coefficients. In this report we display these trans­
port coefficients and method of measurement for 
galvanomagnetic and thermoelectric effects in tetrag­
onal crystal structures. In anticipation of future 
experimental and theoretical results these transport 
coefficients have been calculated on the basis of 
various ellipsoidal energy band structures compatible 
with tetragonal symmetry. 

2. Galvanomagnetic Coefficients 

The electric current density components Jt and 
electric field components Et are related by the 
conductivity tensor atj in the following way: 

Ji=<Tij('H)Ej, (1) 

where the conductivity is understood to be a function 
of the magnetic field vector H and the Einstein sum­
mation convention is used. For weak field galvano­
magnetic effects a series expansion of a in powers of 
H up to second order is frequently sufficient. To 
second order the current is given by 

.Jt=ff<SEt+ffi)]tEiHk+iT\%tEiHltH1. (2) 

The superscripts indicate the corresponding power of 
H, but these will frequently be omitted without 
causing ambiguity. The restrictions of crystal 
symmetry [l]1 and the Onsager reciprocal relations 
[2, 3] greatly limit the number of independent con­
ductivity coefficients in eq (2). The symmetry 
conditions of the tetragonal point group of rutile 
(D4A) require that eq (2) remain invariant under 
rotations about three perpendicular 2-fold axes, one 

i Figures in brackets indicate the literature references at the end of this paper. 

of which is also a 4-fold axis. The Onsager rela­
tions require that a[f and a\%i be symmetric, while 
<ri)\ must be antisymmetric on interchange of i and,?'. 
The resulting independent components are produced 
in tables 1, 2 and 3. Note that for zero order there 
are two coefficients, for first order two, and for 
second order there are seven. 

T A B L E 1. Zero order magneto-conductive coefficients 

Asterisks denote the coefficients which will be taken as the independent quanti­
ties. Indices 1, 2, 3 refer to crystal axes, 3 being the 4-fold axis. 

All others vanish. 

T A B L E 2. First order magneto-conductive coefficients 

All others vanish. 

0 " 1 2 3 = — °"213 

0"l32 = cr321 = —<T312= —0-231 

T A B L E 3. Second order magneto-conductive coefficients 

O'nn=0'2222 

°3333 

<r1122 = 0"2211 

°'1212=0'1221 0'2121 = 0'2112 

°'1133 = <7'2233 

°"1313=<r2323 = C2332 = 0-3232 = 0-3223 = <T1331 = 0-3131 = <T3113 

°"3311=<r3322 

All others vanish. 

More often than not, experimental measurements 
yield resistivity coefficients, the reciprocal of the 
conductivity. The resistivity coefficients are given 
up to the second order by 

EMpft+P&Ht+p&tHJBAJ,. (3) 
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The same symmetry conditions apply as before, and 
the independent resistive coefficients will be identified 
by the same subscripts. The coefficients are given 
in table 4. 

T A B L E 4. Magnetoresistive coefficients in terms of magneto-
conductive coefficients 

Expressions are correct to second order in the magnetic field 

PHk= — i,j,k=l,2,S 
<TU(Tjj 

<Tiu 
f = l , 2, 3 

a 2 

Piium*~ — l, ]—L, A, 6 

Z(TU<Tjjffhk <Tii(Tjj j^j-^fc-^j 

auahk <rH ij^jj^k^i 

3 . Experimental Determination of Magneto-
resistive Coefficients 

The zero order resistivities are measured in the 
usual way. The two coefficients pn and p33 refer to 
the resistivities perpendicular and parallel to the 
4-fold axis, respectively. Typical experimental ori­

entations and geometries have been determined for 
obtaining the magnetoresistive coefficients. The 
first order, or Hall, coefficients are described in table 
5, and the second order in table 6. Numerals 1, 2, 3 
in the tables refer to crystal axes; 1 and 2 being 2-fold 
and 3 being the 4-fold axis. 

T A B L E 5. Configurations for measurement of Hall effect in 
tetragonal crystals 

% ErP\2i J 2 H 3 

*T E3=y°32i J a H l 

T A B L E 6. Configurations for measurement of magnetoresistive 
coefficients of tetragonal crystals 

2 , iH 

< 
^ _ 

3 E 3 = ̂ 33 ^3 +/>3333 J3H3 

"̂ T 
E, =/>n J| + />||22 J| H 2 

I l H 

_f—— <^Z E3= ^ 3 + />33.l J3Hf _£— f ^ ^ 1 E' ~~P" J' +/>"33 J' "* 

< 

,2 ^H 

1 k:& 
H Ei =/>n Ji +/>im Ji Hi 

E22/>2i2) J"i H2 sin 2 0 

J^3 (H IN 1-2 PLANE) 

^ 
T E3 = y03,3l J H2 sin 20 

^3 ^H 
(H IN 1-3 PLANE) 
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4. Magnetoconductive Coefficients on the 
Basis of Simple Ellipsoidal Models 

Experimental and theoretical studies of band 
structure and transport coefficients may be aided by 
calculations of the transport properties of simple 
many ellipsoid energy surface configurations. This 
type of analysis of magnetoresistance has been very 
successful in the determination of the band structures 
of silicon and germanium [4, 5]. 

First we discuss the magnetoconductive coefficients 
of a single ellipsoid. Rather than using a Boltzmann 
equation, we follow Brooks [5] method of following 
the motion of a single charge carrier on the energy 
surface under the influence of applied fields, and 
then averaging over a Maxwell distribution of 
carriers. The equations of motion for an electron 
on an ellipsoidal energy surface, in the effective 
mass approximation, are the three equations 

f = ^ + i ^ - ^ (4) 

where the subscripts indicate components or effective 
masses along principal directions of the ellipsoid, 
and i, j , k are cyclic permutations of 1, 2, 3. These 
equations of motion are solved to second order in 
H, giving the velocity as a function of time. The 
acquired motion is obtained by averaging over a 
distribution of free drift times given by (lJr)e~t,T. 
The resultant acquired current averaged over the 
Maxwell distribution of electrons is 

/ \ e (T)rr 
mirrtjC mimkc 

m\mhe 
EtH*r m2

imjc
i Etm 

•mimjmkc
2 mimjfn^c2 EJHJH*. (5) 

In eq (5) it is understood that the relaxation time T 
is independent of direction, but perhaps dependent 
on energy. The angular brackets indicate averages 
of r over the Maxwellian energy distribution. The 
total current is just the average current multiplied 
by the number of electrons in the ellipsoid. 

We shall consider now the resistivity coefficients 
for several configurations of ellipsoids compatible 
with crystal symmetry. The assumption is made 
that the total conductivity of the array is the sum 
of the conductivities of the individual ellipsoids. 
Thus we assume that a relaxation time exists for 
each ellipsoid, and that intervalley scattering is 
negligible. 

4.1. Single Ellipsoid 

In this case m1=m2^m3. The configuration is 
shown in figure 1. The results for the resistive 
coefficients are as follows: 

m| = m2^m3 

F I G U R E 1. Single ellipsoid for tetragonal symmetry. 

_ m i 
P1212 — ~ ~ Pl313= 

iris 
2mznc2{ 

P 1 1 8 8 - P 8 3 U - — Pn22-minc 

Pl l l l — P3333 — 0 . 

1 r ( r 3 ) ( r ) - ( r 2 ) H 
™>(T) L <T>2 J 

1 r ( r 3 ) ( r ) - ( r 2 ) n 

,C2<r>L <r>2 J 

4.2. Four Ellipsoid Model 

In this case the ellipsoids can have three different 
masses, but are placed along the 2-fold axes, as 
shown in figure 2. The effective masses m1} m2, m3 
apply to ellipsoid number 1 of figure 2. The masses 
for the other ellipsoids are obtained by rotation. 
The resistive coefficients are: 

__—1 (r2) 4mim2 
Pm~~nec <r>2 (m1+m2)

2 

_ 1 (r2) 
P l 3 2 ~ ^ < T > 2 

Notice that —=- * 2 ^constant . 
P132 ( w i + m 2 ) 2 

1 V2{m\+mt) (T*)(T) ( T 2 ) H 
Pll22~7m3C2<T>L(mi+™2)2 <r>2 <r)2J 

P1212-
-1 I" 4mim2 

'2nmzc
2{r) L ( m i + m 2 ) : ^^~w\ 

2 V{TZ)(T) 4m1m2 <r2)2~| 
pim~(mi+m2)mc2{T) L <r>2 (m1+m2y (r>2 J 

P1313- (mi+m2> 2)w2<r)L 
(T)(T3)-(T*Y 

p3S11_2m1m2nc2(r)L (T> 

Pllll = P3333=0i 

] 
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^fe 

F I G U R E 2. Four ellipsoids for tetragonal symmetry. 

4.3. Five Ellipsoids 

There is a possibility that more than one energy 
surface will be populated. To give an example, we 
shall consider a combination of cases (a) and (b), 
as shown in figure 3. The resultant resistivities are: 

ELLIPSOID i. m l /m 2 ^m 3 ^m l 

ELLIPSOID 5.m| = m2=m4 

m3 = m5 

F I G U R E 3. Five ellipsoids for tetragonal symmetry. 

mlm2m\nl + m\m\n2 

[• (m1+m2)m4~ + mxm27i2 j 

Pl32~ 
1 (r2) I (mi + ms) 

nl mAmb -2+77i1m27n3n2 ] 
~ec (T) 

(7n5n1+7n3n2) (ml+m2)mj^+mlm2ri2 

1 (r3) [mlm5ni+7n17n27n3n2]7n17n2 , 1 (r2)2 

P1212—1"3 7~T2 

( m i+m 2)7/147/1 5
7^+77i17n27n3n2 1 

C2 (T)2 r 71 "I2 2c2 (T)Z V 71 "I2 

(m14-m2)m4 -^+m1m2^2 m3m5
 v (mi+m2)m4 -— + mi7n2n2 [ f l ^ i + w ^ ] ^ ^ 

p n 2 2 ~ ? o y 2 
(m\+m2

2)m\mb^+m\m2
2m3n2\ ,2,2 (m1+m2)m4mB ~+mx7n2m37i2 \ 2\2 

% l 2 2c2 (rT3 

(m1+m2)m4—+mim2n2 m3m5 

P1133 ""2 

1 (r3) I (ml + m 2) m 4^+^?^2^2 j j 

C2 (r) 

2\2 

3" 

(ml+w>2)m4^+mxm2n2 [7n5n1+m3n2]m3m5 

[77ilni+77ij7n2n2]
27n17n2 

c2
 (T)2 r ?&i "12 c2 (r)3 r 

(m 1+m 2 )m 4 -^+mim 2n 2 m4 (m1+m2)/ri 

[ m 2 m 5 ^ 1 + ^ i ^ 2 ^ 3 ^ 2 ] 

4 ~+7nl77l27l2 77l4 

_ - l < r 3 > 
Pl313~~?" (T2 

(ra1+ra2)m4 ^ ^ r a x m ^ [wsft i+wWi]^ 

/ 2 \2[m4^i+^i^2^2] (mi+m2)m4m5 ~+mlm2m37i2 

rY3 T n T2 

(7n1+m2)m4-^+7ni7n2n2 [m5n1 + m3^2]m4 

2c2 ( 

wi 
)m4m5 2-+mim2m3^2 1 1 <T3)\ ( m i+ m 2) m 4m 5 y+mim 2 ml7 i 2 1 , 2,2 (mi+m2)? 

03311— 2 / \ 2 [m57i1+m3^2]2mim2m4 c2 (r)3 [", . . nx . "I r , 1 2 
w L J w (mi+7n2)m4[~-+7ni7n2n2 \[m!in1+m3n2]

27n17n27ni 
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In all the previous formulas the temperature 
dependence of the resistivities depends upon averages 
of several powers of r. For power law scattering, 
T=TQ£-p} where e is the energy and p the power, we 
have 

<T"> = 1 

(kT)-»T (~np 

(I) 
(6) 

I t might be worth noting that in tetragonal crystals 
anisotropic effects make themselves known in lower 
order magnetoresistive coefficients than for cubic 
cases. Thus, for example, information concerning 
anisotropy of the energy surfaces can be obtained 
from the Hall coefficient of Ti02 , while one must go 
to magnetoresistive to see the lowest order effects 
of cubic anisotropy in Si or Ge. 

5. Thermoelectric Power 

The electric current density components J{ and 
the thermal current components Qt are related to the 
electric field components Et and the temperature 

d T . 
gradient components ^-^r in the following way: 

Qi=A2)Ej
J
rA

22
j ^TTF-; 

(7) 

(8) 

However, in order to apply Onsager's theorem to the 
above coefficients we must rewrite the equations in 
terms of affinities and fluxes [6]. Thus (7) and (8) 
become 

J i R 1 1 1 bM 
' e " T bX<~ 

1 & M 
v' "rax, 

pi2 d 1 
° SXj T 

b 1 
bX,T 

(9) 

(10) 

where e is the charge of an electron and /* is the elec­
trochemical potential. The Onsager theorem states 
that B\)=Blj\ and thereby reduces the number of 
independent coefficients. Accordingly, the number 
of the independent coefficients A\) is also reduced. 
Applying the restrictions of crystal symmetry to 
the coefficients A\) it follows that there are two 
independent elements AH^All and AH. 

The absolute thermoelectric power is defined as 
the change in voltage per unit change in temperature 
difference at zero current. So setting Jt equal to 
zero and using the above results we get: 

Et-
Aff bT 

"A\\ bx; (ID 

The voltage V is given by 

A% bT 
Au dXi 

dXi 

£ dTt. 

The absolute thermoelectric power is 

dVt 
dT 

ii-
A11= 

(12) 

(13) 

I t follows that we have two possible values of the 
A12 A12 

thermoelectric power, — - j ^ and —-jff? corre-
-"-11 -^33 

sponding to the one and three axes respectively. 
We see also that the Onsager theorem does not give 
us any limitation on the possible numbers of values 
of the thermoelectric power but only gives us rela­
tions between it and other thermoelectric coefficients. 

6. Thermoelectric Power on the Basis of 
Simple Ellipsoidal Models 

We begin with the Boltzmann transport equation 
[7]: 

K * -VxJ + bT* y l ~ r(e) 
(14) 

Since the electric field and temperature gradient are 
always small and their squares and products can be 
neglected, we obtain an approximate solution of 
eq (14) by putting / = / 0 on the left side where f0 is 
the equilibrium distribution. Using 

a/0=7T a A - r W p 
bT dT\ T ) be 

we get 

^+^i(HT+TS^(ft+e4 (15) 

where f is the Fermi energy, and e the energy. 
The electric current density is given by [7]: 

J =4?JV#- (16) 

Using our solution for / and writing in terms of 
components of J we get: 

Ji=Kti[e^+eT^(ff]+Ltj[^2' (17) 
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where 

1 C° (if 

(18) 

(19) 

Setting Ji—O, we calculate the thermoelectric power 
in the same manner as section 5. The result is: 

bl—el Kti }T (20) 

(Here we anticipated the results Kij=Lij=0 if i^j.) 
Assuming a single ellipsoidal energy surface and 

using dk= ;— as the element of volume where 
grad*€ 

dS is an element of surface of the ellipsoid, we find 
upon performing the indicated integration: 

Ku- _<Tu(P) 

We [have again assumed T=T0€~P. (The above 
results are obvious on comparison with the expression 
for au by Abeles and Meiboom [3].) The thermo­
electric power for a single ellipsoid may be written: 

St=~-
\2~~p) kT<Tii -£<Tii 

<?ii 
(22; 

The case for many ellipsoids is easily gotten from 
the above result. Since conductivities simply add 
we have the result: 

Si 

where k refers to the kth ellipsoid. We note that 
if f, measured from the bottom of the ellipsoid, 
is constant for all ellipsoids of the configuration 
then the thermoelectric power is independent of 
direction and is given by 

S-- -^[(H*r-'} (24) 

Thus the simplest case which could yield an aniso­
tropic thermoelectric power and also have tetragonal 
symmetry would be the five ellipsoid case discussed 
earlier. 

Using the relationship 

eV
kT=lnh3(2TmkT)-v2 

(25) 

we can express the thermoelectric power in terms 
of the density of electrons, temperature, and effec­
tive masses. 

6.1. Single-Ellipsoid Case 

The masses are those indicated in figure 1. Using 
eqs (24) and (25) we get for the case of a single 
ellipsoid: 

(26) 

where 

Si=S=— GJ 
e 

G=2k~k log n+^k log T-k log iK i(27rmk)-^2 (27) 

and 
m = (m1m2m?)

1/3'. 

6.2. Four Ellipsoid Case, Figure 2 

(28) 

Carrying out a similar calculation for the four 
ellipsoid case we get: 

G=2k-k log | + | k log T-k log i A3(27rm£)-3/2, 

with eqs (26) and (28) still true. Note that the 
only change is the division of the density of electrons 
by 4. This is just what we would expect since 
equal voltage sources in parallel produce a voltage 
equal to one of the sources. Thus the presence of 
many ellipsoids is seen as an effective reduction 
of the number of carriers. 

6.3. Five Ellipsoid Models 

We shall consider the simplest anisotropic case of 
five ellipsoids as shown in figure 3. Using eqs (23) 
and (25), we obtain for the two values of the thermo­
electric power: 

Gar=-
I \mi m2/ m4 

\ m i m2J 2 
n2 
TYIA 

^G1+^-G2 
n m3 mB 
C r c = ; 

m3 ra5 

where 

1 G'=2k-k log ̂ + | k log T-k log ^ hs(27rm1k)-3/2 

G2=2k-k log n 2 + | k log T-k log i hs(2wm2k)-s/2 

m1=(m1m2mz)
1/3 

m2=(mlm5)
1/3. 
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c 
Here Sa— is the thermoelectric power perpen-

C 
dicular to the 4-fold axis and is the thermoelec-

e 
trie power along the 4-fold axis. 

7. Phonon-Drag Contribution to the Thermo­
electric Power 

In all the former work, the phonon-drag contribu­
tion [8, 9] to the thermoelectric power was ignored. 
According to Frederikse [9] the thermoelectric power 
is given by: 

1 K1 

where — - ^ is the extra term due to phonon drag. 
For the case of lattice scattering (p=y2), i.e., 
A e . » A ^ , 

IT 3 
Kx 4 '" Ae<p \kT J 

.1/2 Aph (2ms>\<\ (30) 

where 

s = speed of sound, 
Aj,a=phonon-phonon mean free path, 
Ae^=electron-phonon mean free path, 
Aei=electron-impurity ion mean free path, 
m=(m1m2mzy

/z. 

We have the result that the thermoelectric power of 
a single ellipsoid is given by: 

Any easy extension to the case of many ellipsoids is 
obtained by use of [10] 

st= 
SS**? 

(32) 

Here Sk indicates the thermoelectric power of 
a single ellipsoid and a\ its conductivity in the i th 
direction. This is easily seen to be equivalent to 
our former method of treating the case of many 
ellipsoids. 

N O T E : The formulas of sections 4.3 and 6.3 are 
derived on the basis of a single relaxation time for 
the different bands. Generalization to different 
relaxation times for each band is straightforward. 
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