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(Marah 2, 1943)
The independent Hall, maghetoresistive, snd thermeelestric coefficients for 8 tetragonsal

cryetal heve

n tabuleted and geometrie confgurations for thair ex)
menot have besn determioed. Thess posfficients bave heen oslenlata
several simpls ellipsoldal modela, in the range

rimental measure-
oh assumphions of
of nondegenerste statietics. Twmplicetions

of experimentally obaerved isolropy or anisorropy of trancport properties on the strdeturs

af the energy surfaces are noted,

1. Introduction

Detailed studies on the tranaport propertiez of
rutile requira tabulations of in dent  tengor
coefficients. In this repori we diaplay these trans-
port eosfficients and method of meassurement for
palvanomagnetic and thermoelectrie affects in tetrag-
onsl cr:rﬁta.g] structures, In anticipation of future
experimental snd theoretical results these transport
copdficientz have been ecalevlated on the basiz of
various ellipseidal energy band structuras compatible
with tetragonal symmetry.

2. Galvanomagqnetic Coefficients

The elsctric current density compononts f, and
electric field components X, are telated by the
conductivity tensor o,; i the following way:

J1:=ﬂ'ﬁfH}E.ﬁ {1]

where the conduetivity is understood to be n function
of the megnetic field vector H and the Einstein sum-
metion convention is used. For weak fisld galvano-
mapnetic effects a serics expansion of ¢ in powers of
H up to second order is frequently sufficient. To
second order the current i3 piven by

- J’_ZF{EIEJ'—P FELEJHL—FniﬁIE}HE‘HI' {2}

The superzeripts indicate the corresponding power of
H, but these will frequently be pnﬁﬁ without
cansing ambipuity. The restrictions of crystal
symmetry El]1 and the Onsager reciprocal relstions
[2, 3] tly limit the number of independent con-
ductivity coefficients in eg (2). The symmagiy
conditions of the tetragonal pomt group of rutile
{D,a) Tequite that eq (2) remsin invariant under
rotations about three perpendicular 2-fold axes, one

1 Fignres 16 byeeicély Indicate the litarsturs references ot the end of this paper.

of which iz also & 4-fold axis. The Onsager rela-
tions require that «ff* and i3}, be symmetric, while
#ili must be antisymmetric oo interchaoge of 1 aod 7,
TEB resulting indepandent components are produced
in tablea 1, 2 and 3. Note that for zero order there
are two coefhicients, for Arst order fwo, and for
second order thers are seven,

TipLE 1. Zero erder mameto-conduciive cogficzents

Aatarlaks dennta the eopfitclen ta whieh wriil be taken s the Indapendent quand-
tha. Indives 1, 2, 4 refer te cryeisd axes, § belng the +old sxda.

r:L=tl".|:l
"0
AN others vanish,

TaBLE 2. Fir#l order magmealo-conduchim cogffictenis
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More oiten than not, experimental measurstnents
yleld resistivity coefficients, the reciprocsl of the
conductivity. The resistivity cosfficients are given
up to the second order by

E =[pP 4Bt ot H LT ;. (3}
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The same symmetry conditions apply as bafors, and
the independent remstive coefficients will be identified
by ﬂ'l? same subscripts. The coefficientz are given
in table 4.
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3. Experimental Determination of Magneto-
resistive Coeflicionts

The zero order resistivities are measured in the
usual sway. The two coefficients oy, and py refer to
the resistivities perpendicolar snd parsllel to the
4-fold axis, respectively. Typical experimental ori-

entations and geometries have been determined lor
obtaining the magnetoresisiive coefficients. The
first order, or Hall, cosificients are described in table
5, and the second order in table 8. Numerals 1, 2, 3
i the tables refer to crystal axes; 1 and 2 being 2-fold
sid 3 heing the 4-fold sxis.

Tasre 5. Confpuralions for measurement of Hafl efect in
fetragonal erymialy
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4. Magnetoconductive Coefficients on the
Buasis of Simple Ellipscidal Models

Experimental snd theoretical studies of band
* structure and transport coefficients may he aided b
caleulations of the traosport pro of E‘H,%E &
meny ellipaoid energy surface conhgurations. is
type of analveis of magnetoresistance has hean vary
suceesaful in the detarmination of the band structures
of silicon and germanium 4, 5.

Firat wo discuss the netoconductive coefficienta
of a aingle ellipsoid. Rather than using & Bolizmann
equation, we follow Brooks [5] method of following
the motion of a single charge carmer on the soergy
surface under tha influenca of applied fialds, and
then awveraping over a Maxwell distribution of
CATTIETS, 'ﬁw equationz of motion for an eflectron
on an ellipsoidal energy surface, in the effective
mase approximation, are the thres equations

et S g
o Bk o e L), (1)

where the subseripte indicats components or effective
masses along principal directions of the ellipsoid,
and %, 7, & are cyclic permutations of 1, 2, 3. These
squations of motion are solved to second order in

¢ giving the velocity ae a function of time. The
poquired motion iz obtamed Ly averarming over a
distribution of free drift times given by (1/r)e %",
The resultant acquired cwrrent averaged over the
Maxwell distribution of electrons is

{El'r'!}=e:£_f}E{+—ﬂz{r£} E}Ht——aa{fz} EtHJ

™ M ¢ e
(% (% "
T E"H?_mfm,c* Ed;
e‘ﬂr“} _e:_{-rs}
+m;m3m;t¥E”H’H"‘+mim;m¥Gﬁ EHH,. (5)

In {5) it iz undersiood that the relaxation time
iz independent of direction, hut perhsps dependent
an cnergy.  ‘The angular brackets indicate avorages
of 7 over the Maxwellian energy distribution. The
total current is just the av. corrent maltiplied
by the number of electrons in the ellipsoid.

We shall consider now the resistivity coefficients
Tor several configurations of ellipsoids compatible
with erystal symmetry. The assumption is made
that the total conductivity of the array is tha sum
of the conduetivities of the individual sllipsoids.
Thus we assume that a relaxation time exists for
each ellipzoid, and that intervalley szcatiering is
negligible.

4.1, Singls Ellipsaid
In thiz ¢ese my=mi#m; The conbguration is

shown in figure 1. The resulis for the resistive
coefficients are as Tollows:
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4.2, Four Ellipscid Model

In this case the ellipsoids can have thres different
maszea, bot are placed along the 24old Azes, aa
shown 1n figure 2. The effective masses wmy, My, My
apply to elbpsoid number 1 of figure 2. The masses
for the other ellipsoids are obtained by retation.
The resistive coeficienta are:
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4.3, Five Ellpasids

Thara iz & possihility that more than one energy
surface will be populated. Ta §Wﬁ an example, wa
shell consider n combination of cazes {n) and (b},
a8 ahown in figure 3. The resultans ms.lstlmues 0TE:!
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In all the wious fortnules the temperature

depandenca of t-EreI'Eﬂlstl‘i']t-leﬂ depends upon sverages

of several powers of r. For power law scattenng,

Th:fui_p, where e is the energy and @ the power, we
Ve

&TYy-or (gw)_
r(3)

It might be werth noti in tetragonal crystals
anisotropic effects ma.kemghemsalv&s known in lower
order magnetoresistive coefficients than for cubic
cases, T uy, for example, information concermn
anisotrop of the enerpy snrfaces can be ohtam“elg
from the h&“ coefficient of Ti(., while ona must go
to netoresistive to see the lowest order effects
of cubic anisviropy in 51 or Ge.

{rmy=1} (6)

8. Thermoslectric Power

The electric current density components J; and
the thermsl current components &, are related to the
electric field components K, snd the temperatore

gradient. components 2T in the fTollowing way:

5K,

T
i ox 7)

r
Q=ANE+ A7 I

Ji=ARE A

(8)

However, in order to apply Omsager's theoram to the
above coefficients we must Tewrite the equations in
tertns of affinities snd Auwxes [8]. Thus (7} and {8}

bacome
Ji g 1 DM 11
1 aAdf i
Qf—-Eilr T ?IX +Bu ﬂX T’ {lﬂ}

where ¢ is the charge of an electron and g is the elec-
trochemical potential, The Ounsager theorem states
thart. ¥ and thereby reduces the number of

ent ooefficients. Acnurdmgl:,r the number
af t. independent coefficients A¥ is also reduced.
.ﬂ.]:lpl;?l e&n e rest.nutums of crystal symmetry to
the coefficients A% it follows that thera are two
mdependent elamanta Al =Az and AY.

The sbzolute thermoelectrie power iz deofined as
the changs in voltaga per unit change in temperature
difference st zero current. 5o setting J; equal to
zero eod using the nbove resultz we get:

4y o7
Ai 0X,

1'-!‘,_
i."'_

El=— f”}

The voltage V is given by
= A12 T

ke
Vi [ Bdnm— |5 5y,
T
— [n 2, 12

1 1
The abaelute thevmoelectric power s

dVi Aﬁ

T Al =8y, {13)
It follows that we have two posszible velues of the

ik i1

thermoelectric  power, -—% and —%r corre-

%}}ondmg to the one and three axes respectively.
a sea Rlzo that the Oneager theorem does not give
vs any limitation on the possible numbers of values
of the thermoelectric power but only gives us rela-
tions between it and other thermoeleciric coeflicienta.

6. Thermosleciric Power on the Basis of
Simple Eilipsoided Models

[?}We hegin with the Boltzmann trsnsport equation

-—E m‘-i—af . vT_f{J;" {143

Since the electrie field and temperature gradient are
always amall and their squares and producis can he
neglected, we obtain an approximaste solution of
aq (14) by putting f=f; on the left side where f; is
the aquilibriom dlstrlhutlun TUsing

dfs_p 2

8 g 0 (1Y 0
2T = oT

we gt

Y 3 &

O
wx. tH ex, o7

f=_fu+rv,a;E T —!—aE,) {15}

whero ¢ iz the Fermi energy, and ¢ the ensrpy.
The electric current density iz given by [7]:

J=25 | ufdi. (16}

Using our sclution for § and writing i terms of
components of J we got:

J=Ey| B+t s (B [+ Lo 5o ] 67
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where

"%‘.J; Ty %%Iﬂf:ffﬁ (18)
1 =
—F‘J; Tk, %ﬁ' EEH:ZLH. (19]

Satting J,=0, we ealculate the thermoeleciric powar
in the same MmMahner ns section 5. The result i=:

17 Lu—H 1
s=— [P 2]

Ky (20)

{Here we suticipated the results K =1, =0 if 3.}
Asguming a single ellipsoidsl energy murface ond
. _ ded8
uaing dﬁ'—gr adee
4% iz an element of surfaca of the ellip=oid, we find
upen performing the indicated integration:

as the elernent of volume where

K!!___G:LEP}
BT /5
L= (§—2) o). (21)
We lhave apain assumed r=xp~% (The uwbove

results are obvious on comparison with the expression
for &4 by Abeles and Melboom [3].} The thermo-
electric power for & aingle ellipsoid may be written:

1 I:(g-P kTFu"‘i‘Fu}

Sf=-€_T Tayp

(22)

The cass for many ellipsoids is casily gotten from
the above rezult. Since conductivities simply add
we have the result:

E_ L. k) Ak}
1 [(2 P)‘ET$‘-"H ¥.‘: ﬂ'u]
8= =T $ ey *

where & refers to the kth ellipsoid. We nota that
if §, measursed from the bottom of the elipeoid,
1B congtant for all elliproide of the configuration
then the thermoelectric power 1s independent of
direction and is given by

sl

Thus the simplest case which could yield an aniso-
tropic thermoelectric power and also have tetragonal
symmetry would be the five ellipsoid case discussed
earlier,

Using the relationship

(23)

(24)

grrﬂ‘mé W (e T4 (25)

208

we can express the thermoelectric power in terms
of the density of electrons, temperature, and effec-
ive mMesses.

6.1, Single-Ellipscid Case

The masses are those indicated in figure 1. Using
C{iﬂ 24 and (25) we get for the case of a singls
ellipsoid:

8=8=—16, (38

where
@ =2kt log -n-l-*%k log T—k log %ﬁ‘iﬂmﬂ @)

and
m={m, Iy,
€.2. Four Ellipsoid Case, Figura 2

Carrying out a similar celeulation for the fouwr
ellipsoid case we get:

(28}

G=2k—k log 2+5 k log T—k log § 1'(2emi =,

with eqs (26) snd (23} still true.
only chanee iz the division of the density of eleetrons
by 4. This is just what we would expect since
aqual voliage sources in produce a voltage
pgquat to one of the sources. Thus the presence of
many cliipzoids is seen Bs an effective reduction
of the number of carriers.

6.3, Five Ellipsoid Models

‘We shall consider the simplest anisotropic case of
five allipscida as shown in figure 3. Using eqe (23)
and (25, wa obtain for the two values of the thermao-
electric power:

Note that the

w1l 1
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=1 fl S A
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wheta

=2k~ log 243 & log Tk log L B (ammity -2

=2k —i log m+g klog T—F log § B*(2xm) "
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Here 5, =—% ia the thermoelectric power perpen-

dicular to the 4-fold axis and —% i3 the thermosles-
tric power slong the 4-fold axis.

7. Phonon-Drag Coninbution to the Thermo-
electric Power

In all the former work, the phoncn-drag contribu-
tion [8, B] to tha thermoeleciric power was ignored.
According to Frederikse {9] the thermoelectric power
1= given by

I[K: ¢ K‘]
S| mr rtE

where —%% 13 the extra terin due to phun{m drag.

{28)

For the case of lattice scattering (p=%}, iLe,
g V3. P

H'_ 3 1 Amf2ms )”“
K:. 1"' Ave =T ) ':3'0}
where
s=gpeed of sound,
A= phonon-phonon mean free path,

Ap=sloctron-phonon mean free path,
Ae==elentron-impurity ion mean frea path,
m= {1,y R

We have the result. that the thermoelsetric power of
& sirgle ellipsoid is given by

e A me L

1”-5-

g=—2 [2&—%&% te k] B1)

Any sasy extenalon to the case of many ellipsoids is
obtaitied by uze of [10]

S*=¥ Stﬂf.
totel <

o

(32}

Here & indicates t.]:l.e thermoelectric power of
a singls allipsoid and «f its conductivity in the 4th
dlreman his iz easily spen to be equivalent to
ocur former method of treating the case of many

ellipscids.

Note: The formules of sections 4.3 and 6.3 are
derived on the basie of a single relaxation time for
the differcot bands,  Generalization to different
ralaxation times for each band iz straiphtforward.
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