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Weak coupling of internal degrees of freedom of molecules o the vanslational degrees of lreadom
of a Auid resuits in additional moder of motion for density Aoctuations. Thess new modes afect Lthe
apeciral distribution of light scattered by denaity fluctuations o that the Landaw-Placzek ratic is not
salighed. The cage of thermal relaxailon with a slngle relaxation Ume is worked out in detail.  For
mulns for the spectral distribution of the scatiared light, for the reiio of the intensitias of the cantral
(Rayleigh) v the Brillouin components and for the phonon velocity are derived and apglied to ¢arbon
disulfide and carbon letrachbonde. The dala for carbon tetrachloride are shown o be inconaiatent
wilh tha single relaxation time model for thermal relaxation.

Key Wonds: Brillouin seatiering, density fuctoations in liguide, light scatiering in liquids, Rayleigh
scaltering, speotral distributivn of scatered light, thermal relaxation, volume viscosity.

1. Introduction

In this paper we arve concerned with density Aluctuations in & Auid in which internal degrees
of freedom of the molecules are weakly coupled 10 the translational degrees of freedom of the Buid.
Thermal relaxation is an example of the type of processes we have in mind. Problems of this
type are of interest because it is now possible to experimentally probe the frequency spectrum of
density fluctuations with light scartering experiments using a laser as the light source [1].!
The coupling of mternal degrees of freedom to the trenslationel motion means that the decay of
density Auctuations will proceed by more waya than the three “normal modes™ usually considered.
This is refected in the spectral distribution of light scattered by density fAuctuations. In this
paper we investigate a relatively simple case involving thermal relaxation with a single relaxation
time. The existence of the additional mode is shown and the effect of this mode on the spectrum
of the scattered light i= examined in detail

Light scattering experiments provide a Fourier analysis of the density varations in a Auid.
The variation of the intensity of the scattered light with the scattering angle 8 (and therefore with
the chanrge in the wave vector of the scattered light) Fourier decompose the spatial dependence
of the fluctuations while the shifts in the frequency of the scattered light decompose the Hme
dependence of the Auctuations [2]. Such experiments enable us to study collective motions in
the Huid without seriously disturbing the fluid. Oa the other hand. it is also possible to nse Light
scattering measurements in conjunction with a model for the fluctuations to measure several of
the bulk properties of the fluid. For example, the sound velocity and the sound absorption co-
efficient can be obtained by measuring the shift in frequency and the width of the Brillounin lines.

In some circumstances it is pos=ible 10 obtain from light scattering experiments information
about the structure of the correlation functions whose time integrals are the transport coefhicients
[3). An example of this type providez the basis for the calculations we present.

This paper consists of three parts. Inthe first part we review the relationship between density
fluctuations and light =cattering. The phenomenclogical approach of Einstein and Smoluchow-

"Faguwes in hrackets indicate the Elermture references 41 ke 2od of Lhis paper.
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ski [4] iz discussed and compared with the formulation of scattering problems of Van Hove [5].
The generalized structure factor &k, @) is introduced and some of its properties ate described.

The second part of the paper consists of & detailed analysis of the frequency spectrum of
density fluctuations in a fluid in which thermal relaxation of vibrational degrees of freedom can
occur. Particular emphasis is placed on single relaxation time procesaes. The results for
single relaxation time processes are summarized at the end sc that readers not wishing 10 go
through the details of the calculation will not lose heart.

The third part of the paper consists of a comparison of availahle experimental data with
the analysia of the density fluctuations, The primary example is concerned with CS;, a substance
whoae internal degrees of freedom relax with a single relaxation time. We also demonstirate
that the data for CCL, are not'in agreement with the predictions for a single relaxation time,

2. Light Scattering Formalism

2.1. Phenomenclogleal Theory of Einstein-Smoluchowski

The randem thermal motion of molecules in a fluid produces Buctuations in the density and
alsp in the orientation of melecules in volumes small compared to the wavelength of the incident
light. These fluctuations result in local varations in the dielectrie sonstant and therefore scatter
light. We are concerned in this paper only with fluctuations in the deneity. Orientation fluc-
toations result in the depolarization of the scattered light making it possible to experimentally
separaie the scaiteting by density fluctvations, which is fully polarized, from the scattering hy
otientation Auctuations [6].

The intensity of the seattered light ie

IR, 0=l | 7255 ] sin o [elk, w1 M

In eq {1} incident plane polarized light of intensity I and wave vector K i scattered at the origin
and is observed at R. There are N molecules in the scattering valume. The angle between the
electric vector of the incident wave and R is ¢ &%, w) is the Fourier component of the fluctuation
in the dielectric constant. The shift in the angular frequency of the scattered light is @ and the
change in the wave vector in the medium of the scattered light is k; since only the direction of
k changes

E="2xrk;: sin 8f2. (2}

The index of refraction of the scattering fluid is & and the scattering angle is 8. The angnlar
brackets {. . .} indicate an ensemble average over the initial states of the system.

Direct calculation of €k, w) is avoided by assuming that Auctuations in the dielectric constant
are due to fluctuations in the density and the temperalure;

Ae={Defapirhp +(delaTIAT. {3

The cantribution of the tem peraltre Auctuations is ig:nnrcd: we assume that (defda)r =i3efoTp.
Equation {1) is now reduced to

IR, w)=l [F’"‘:;f"fﬁ sin® giae/ap)H [ptk. w)]*) )

where p{k, w} is a Fourier component of the density fluctoation. The problem is now one of
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calenlating plik, «) from the appropriate kinetic model of the fluid. For dense Huids the appro-
priate mode] iz described by the linearized hydrodynamic equations of irreversible thermodynamics.

We should note that (de/3p)r has been assumed to be independent of the shift in the frequency
of the scattered light, w. If this is not the case it is probably also true that the separation of
Ae into a thermodynamic derivative times a Aoctuation term is not a meaningful procedure,  OF
course the value of {def3pir may vary somewhat as the frequency of the incident light changes,
reflecting the frequency dependence of the dielectdc constanl.

2.2. Molecular Theory

Before we undertzke the calculation of pik, e) we review the lighl scatlering formaliam ob-
tained by adapting ¥an Hove's neutron scattering paper [5] to light scaltering. Komarov and
Fisher [7] have shown thal the intensity of light scattered from a Auid of & molecules of effective

polarizability a is

[
AR, wi=1; [%] sin® ¢ Sk, w). (5)

The important change from eq (4} is to replace the mean square Auctuation {[pfk, w}]*} by the
generalized strneture factor Sk, w) which is the space 2nd time Fourder transform of the two-body
correlation function. The correlation function is defined by Van Howve ta be

e, =N ('il f dr'8[r+ n{ﬂ}—r']ﬁ[r’—r_,{:}]>* (6)
For long times and sufficiently large r, Gir, ¢} reduces to the avtocerrelated density
Gir, = N"f dr'{p[r’ — ri0}, 0)pir’, 6} {7}
Equation (7} is appropriate to light scattering in fluids [8]. Care must be 1aken to nse
Sk, m}=I i I dre™ T e-utGir, 1) (8)

only to describe the fully polarized part of the scattered light. The inclusion of angnlar correla-
tions, which result in depolarization, is a more complicated preblem than ihe one we consider
here [9].

In this paper we are cencerned with Sk, ) as defined by eqs (7} and (8);

Sk, wh={plk, wipl—k)}. {9}

Thus eqs (4) and (5) predict the same frequency distribution for light scattered by density Auctua-
tions. A useful property of Fi&., w) is the sum rule

S8 =% J-_n da FE, wh= {plDpl— & {10

Si4} is the ordinary structure factor. Finaily, we note that S, w) is an even function of w at high
temperatures: that is ¥wikyT <1 where kg is Boltzman's constaat and I is the absolute tempera-
ture. In this paper we assume that the inequality is satisfied.
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3. Density Fluctuations When the Internal Modes Decay With a Single Relaxation
Time

We are concerned with the caleulation of ik, w) for a fluid whose molecules possess internal
degrees of freedom which are weakly coupled to the translational modes of the fAuid.  Further
we shall suppose that the sransfer of energy from the internal degrees to the translational degrees
of freedom is described by a single relaxation time process [10, 11).

The procedure 10 be used is to solve the linearized hydrodyoamic equations for pfk, w) in
terms of an initial Auctuation &) {5]. The ose of initial values facilitates calculation of the aver-
age over initial states indicated by £, . .}

An equivalent procedure is the hydrodynamic Auctuation theory of Landau and Lifshitz [12].
Thiz method has been used by Rytov to discuss fluctuations in a viscoelastic mediuom [13].

The lineanzed hydrodynamic equations for the system are the continuity equation

dpu e+ po div v=10, {11}

the longitudinal part of the Navier-Stokes equation {suitahly modified to allow for a frequency
dependent bulk viscosity}

d fir
Pu a—:=—(~?) grad p, -(—"g&) erad T

+ Gm—i—m) grad div 1r+j o't —t'y grad div = ()i’ 12)

!
0
and the energy transport equation.

pec(@Ti /a0y — Loy — 1)Bl{ap/ar) — AVET, =0. {13)

Here p=py+ p; is the number density, T'=To+ T is the temperature; po and To being the equi-
librium values. The shear viscosity iz 1, the bulk or volume viscosity consists of a frequency
independent part 1, and frequency dependent part which is the Fourier transform of n°{t). The
low frequency (adiabatic) sound speed is oy, the thermal expansion coefficient is 3, the thermal
conductivity is A and the ratio of the specific heal al constant pressure ¢p to the specific heat m

constant volume cp is denoted by &,
The analysias proceeds as in reference 8. First the Fourier {space) and Laplace {time} trans--

forms are taken of eqs {111, (12}, and (13). Then we solve for

ok, 3}=f dre—iks ﬁ * deeHpir, (14)

in terms of the mitial value

p[k]=J- dre—ke gir, () (15}

The resolt is

otk 5)_F(9)
FCE (16)
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where

Fis)=s%+s[ak®+ byk® + bY()A] + abok? + ab'tl! + kN1 — 1fy) (17
and
GCis)= 53+ st[ahd + bed® + 5 (5)A2] + s[cZA2 + abodt + ab'(5)K4] + daki!y. (18}
The quantities
a= A poce
b={4{3n,+nipo (19}

515} =i f eHn(i)d2

have been introduced 10 simplify the notation. Egquarion 1% fur 4'ts) applies to any frequency
dependent bulk vizcosity. We will be concerned with 5'(s) for a single relaxation time process;

Hisi= (1 +sr) {20

where 115 the relaxation time.
The dispersion equation is

Gis)=0 {21)
and is used in ultrasonica with s replaced by iw. It is known from vltrasonics [10] that

by =(c3 —cdr (22)

where c. is the infinite frequency sound speed. In thermal relaxation [11]

- [lep —cales
E'J [{Cp-(.‘j'](-‘p 'E%T!

where ¢ is the specific heat of the vibrational degrees of freedom.
To compute F{k, w) we ficst observe that

pik, w)=2 Re r dre-wigik, 1) 23)
L1}

where pik, ) is the inverse Laplace transform of pi%. 5). Tt follows that

Sk, w)= {p(h)pi— £)) {2 Re Fiw)G{iw)}
(24)

= {pli)pi— B))alk, w).

An exact expression for o{k, a) may be readily obtained by replacing s by i@ in eq {16} and taking
twice the real part. The resulting expression is quite involved; direct substivution leads to

olk, w)=2[N. I -+ Mo )/ [ L5 + DB ] {25)
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where

Ny == ® + abod? + (1 — 1f1) + (abk* + b 2P r)f(1 + w?r®),

N: = o[ ad® + bod® + (b f2 — abi KA1 + 18],

Dy =— wal® + bod®) + Fodify + (ab Hefr — 0 A1 + wfr?) {26)
and

Di=w[= o + 32 + abfd + (b 2P + ab AN(] + ?7%)]. (27}

Now we have an exact expreasion for the frequency distbution of the scattered light, If
we wish to be able to interpret this in terms of the properties of 1he material, we must develop
a way to pick out the significant portions of ok, w) for different values of . We have evaluared
atk, w) for a representative set of material parameters and & =35.608 X 10% the resultz are shown
in figure 1 and figure 2. This corresponds to #=30° for scattering in €Sz using a He-Ne lazer.
Te obtain az much oseful infermation as possible from such a pattern it is necessary o write eq
{25) as a sum of terms which are individuaily important only over a restricted range of frequencies
w. The denominator does nut obviously Factor so an indirect approach is needed. One method
ia to pick out the imporant termns, say for small w and to discard the rest. Another approach,
one used profitably in reference B, is to approximately compute the inverse Laplace transform
of pik, 5) and then 10 compute p{k, @) by means of eq (23},  The virtue of this method is that alge-
braic expressions for lthe modes of motion of the density fluctuations are obtained. The difhicully
of course is 10 ohain good approximate solutions to the dispersion equation, eq (21). We shall
make use of both approaches Lo investigaie the properties of ok, w).

4. Properties of o/, w)

In this section we are concerned with the construction of a good approximation Lo a(k, w}
which will permit interpretation of spectral distribution curves in terms of the properties of the
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scattering fluid. The results of this section are contained in eqs (43), (45), and (46}, and are listed,

for convenience, in subsection 4.6,

4.1. Approximate Selution of the Dispension Equotion
When b°(s) is given by eq (20), the transform for the density, eq (16}, is

plk. ) _ Fls)
o) Gils)

where

Fifsy=(1+ s7)st + s[(1 + sP{ak? + bok®) + by k2] + (L + s7)[abole? + 2621 — 1] + abihs

and
Gils) =71+ SF[1 + rlak® + bET] + s¥[wd? + bok® + b k% + ncEh + aboktl]
+s[efi + abokt + ab i+ {eiakdfy)] + chaktly.

The first step in computing plk, t) 15 1o obtain approximate roots of

GI{S} =1

It is convenient to intraduce the dimensionless guantities
¥ =sleck
o= aifesk
Bo= ok feok
B = b3 fcok
D= goker

into eq {30) with the result

DY '+ Y1+ Dia+ Bo)l+ Yo+ Bo+ B+ D{1 + afy)]+ 1 + afo+ s + Daly]+ afy=10.

For interesting values of the change in the wave vector, I,
D= 1, ﬂ1 =]
while

o], Bt 1.
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First we look for solutions of eq (31) which are of order unity. The relevant parts of eq {31) are
DY+ ¥+ D+ /0¥ +¥ =0; {33)

we have neglected terms of order o and o One root of eq {(33) ia zero so we also must examine
eq (32} for zolutions of order @,  The dominant terms are then

Y+afy=0. i34)

Here terms of order o and smaller have been dropped. The solution to eq (34) is
Y=—ufy £35)
or
3=— A3 ey

which also appears in classical theory.
When the ¥=0 term is removed from eq (33) we have

e e D 36)
The formal factoring of eq (36) is
(¥+AKY2+BY+ =0, 37
Two solutions are
Y==B{2+ 11— B*aL]" (38)

which correspond to the phonon modes. The third sclutien,
¥F=—4

yields a second nonpropagating mode. In order that damping occur, it is necessary that 4 >0
be satisfied. For phonons to exist it is necessary that 824 < 1 ac

¥Y=—RBfZxi( (38
Comparison of eqs (36} and (37) shows that
AC=1{D
therefore
Y=—1/CD. (39')
Now multiply eqs (38" and (39') by eok to obtain
s =Dp = ivk; vk =12

(40}
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and
s=—d&/rr,
The Lifetime of the phanons is (I} and their speed ia 2. These are as yel unspecified quantities

lo be extracted from the exact expression of o{f, w). Before we do this we shall obtain an approxi-
mate formnla for ok, w).

4.2, Calculation of o{f, w}
We take Gais) to be
Gis) = ris + ak2fyy (s + T —fok) (s + Tn + fek) (5 + cfen), {41}

Combining eqs (28} and (41} it is a straight forward process 1o obtain the inverse Laplace trans-
form of p(k, 5). Ignoring small terms, we obtain

(el — I — ie?fef — (ot + (] —1;»,:;;1 _
e + R o= b

’—"ﬁ =(1 - Liyle e, +[

N [[1 — il — 1/y)] (o2R2+ cBfetrt) — (2 — A2

1R+ cdfrir? ] Xe o cas vk,  (42)

Next we apply the operation indicated in egs {23) and {24) to ohtain

MR pacy

sk @ =a-1y [tmfpucp? e

+ [{ci—c%}k’—{v*fc%— Debfvtr? + i) —~ lm}] [ 2cifv*r
it + o2 A + o

+ [[1 — i/t — 1)) [R6F + o] —(ch — cﬁ}k’]
Ao+

Ty I's
* [r‘§+{m—vk}*+l‘§+{m+uk}=]' (43}

The prime means that &' is an approximation to o, w), which is given by eq (25).

The first term in eq (43) corresponds to decay of a fluctuation by a thermal diffusion process.
We refer to it as the thermal mode. The second term also represents & nonpropagating type of
decay which is coupled to the internal degrees of freedom of the molecules. The last term rep-
resents the phonon modes. Equation {43} is derived on the assumption that {of*f+)r is moch
less than one,  If this is not the case, eq (43} is a poor representation of the nonpropagaling modes.

4.3. Datermination of #ik) and Ty

Thus far the phonon speed v and width Iz are undetermined quantities. In this subsection
we remedy this by comparing the phonon terms of eq (43) with the significant parts of (&, w),
eq (25), when o ~ vk,
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‘The direct evaluation of ok, w) shows ihat the phonon peak coincides with the vanishing of
the imaginary part of the dispersion relation,

Doy =0. (44

The positive root of eq (43 determines the phonon frequency Wik, Neglecting the term involving
the thermal diffusivity, @, eq (34 is

—w?+ i + 5 ifatriil + ) =0,
The solution is
{wr)? = (WRETE = 1/2[icohr)? — 1] + 1/2[{] — A2r2) + dcjhert] Ve, (45}

From eq (43) we see that as £ — 0, W&} —cp and as £ — o, WE)— ¢.. The vanation of k) with
k is indicated in fGgure 3

The width I's is obtained by observing that if De{o{f)k)=0, Dyo(kk)=—2[t{k)kEl. The
minus sign is necessary go that ['s > 0 be satished. Direct substitution in eq (26) yields

O, = okt + w-(ﬁ) “"2 [1f:::=f=] 11— aie). (46}

It should be noted that the width due to the relaxation is not simply added e the classical absorp-
tion term ai¥1—1fy)+ k% In practice this diference may not be significant, although for
CS; it amounts te about 5 percent of s,

The method used to obtain #() and I's should be applicable 1o more complicated sitnations
although it would be advisable to examine Dw) and Dyiw) numerically and to verify that BalmklE)=0
for each new situation.

4.4, Comparlsan With the Exact Expression

The approximate frequency distribution contained in eq (43) has been compared numerically
with the exact expresaton, eq (25).  This is illustrated in figure 4 whete the percent deviation of the
approximate expresaion from the exact one is shown as & function of frequency. The parameters
are the ones psed to obtain figure 1.  The deviation in the central components is probably due to
a small error in the width of the thermal diffusion mode. A decrease of 1 percent in that width
would eliminate most of the difference between otk, w) and &(%. ). The deviation in the phonon
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component indicates that the maxima of the exact and approximate expressions do not quite coin-
cide. This resulis in the gscillating deviation shown in figure 4. Deviations greater than 1 per-
cent neeur when the magnitnde of o'(E, @) has fallen to less than 1 percent of itz maximum value
a'ik, 0. The sum mile, eq (10}, is satished by the approximate expression o'{(k, w} Lo within 1

percent using this set of parameters.
It i=, of course, possible to improve the accuracy of o'k, w) by obtaining more accurate solu-

tions to the dispersion equation. This would invelve using the solutions we have found, eqs (35)
and (30), as the starting point of an iteration of the dispersion equation. The resulting fermula
for &’ik, w) would be much more complicated than eq (43).

4.5, Intensity Retio
The ratio of the intensity of 1the unshified {cemral} components of the scattered light 1o the
intensity of the Brillonin components is a quantity which is readily obtained experimentally.

This ratio, & =F.{215, is easily oblained from eq {43) by integrating the individwal terma:

{el — % — (#*ef — D{{cilr' T + A1 —1/5)]

P LA ot + R .
[1— /ol — 1] [0*42 + cdh?e®] —(ck — cfi®
clitir® + ookt
At low phonon frequencies vkr <8 1 this reduces to the Landau-Placzek result
F=y—1. (48)
At large phonon frequencies (vt ¥ 1} a more involved expression than eq (48) is obtained;
F=(y=1[1+ {yfly— 13} {{cZ — hHch} ] (49}

The high frequency limit, eq (49) was obtained earlier by Kytov [13],
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The ratio of intensities ., given by eq (47) agrees within 1 percent of & obtained by numerical
integration of the exact expression for ok, w).  From an experimental point of view, eq (47) should
be taken to be an upper bound on %, This is because it may he difficult to detect all of the light
scattered by the second nonpropagating mode; the difficulty arizea from the large width of this
component.

4.6. Summory of the Properties of ok, w)

In the previous paragraphs we have shown that ok, wh, the frequency distzibution function,
may be approximately represented as a sum of four Lorentzian curves;

. _ _ 2MkYpocy
o'k, w)=(1— 1y [WJ,MFF oy

+[(fi—fﬁlk‘—{ﬁfﬂﬁ—llir“d’v‘ﬁ+rﬁk2il lf"r}]l] [ 2t 43
cihrt + ptk? BT+l 43)

[1 = i) — L) ] [*h® + effor® ] — (2 —cﬁ}ﬁ:z]
clfute? + pBiE

I'x I's
X [Fﬁﬂm—v&} M+w+ vmz] (44

where the phonen speed »{k) satisfies

[otk)ber]* =142 [ (e krP — 1]+ 12 [{] — c2A5r* P + defhe® 12 (43)

and the phonon width is

3Ty = ekl + bkt — (g) (“—*—“) + (TW) — akts), (46)

The ratio of 1he central components to that of the Brillouin lines is, in the high frequency limit
(vik) = e}

WF =y — 1L+ {¥fty — 1)} {{e2 — cifed}] (49)

5. Comparison With Experiment
3.1. C5.

In the previous sections, various points have been illustrated by using parameters appropriate
to carbon disulfide (C8;). For example, Figures 1, 2, and 3 show o (&, @) and » (£} for C5, as
predicted by egs (25) and (45) Comparison with experiment is limited to the phonon speed and
to #, the ratie of the intensities of the central and Briflouin components.

The parameters Tor €S, at approximately 20 °C are listed in takle 1. Several measurements
of the phonon speed are listed in table 2. To within the precision with which r and & are known,
eq (45} predicts that » (4) lies within the experimental uncertainty in each case.
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TaBLE 1. Maoterinl porameters: C8g ar M TABLE 2. Phonor velociiy and trleasily raria; €5,

Faramecar Valae Reference Erpetimental | Caleulaied
Heleremes
T 135 = L2 vmffeec L] Webuony| A | Velocity|
by 3B X T 2 cmdlaec 14 N 4 . —
o a7 emfee 16 I
u 1.0d2 w IO eamaec 1a mfaec mlaei
T 216 = LF* wer LY I3 1235 - 1241 083
3 1.678 L] L] 134 M T nH A3
Pr 1,552 profvar 0 17 1350 iy B3
T 1.5 i) 5 | 1356 CWE| 124 k]
[[] 1113 - Xz N

The exrperimeotal rebocities bave been rediced 0 8 °C wping dyol=—3.21 mfeuc-
deg [ The valicitien were cobeuleted ouing eq 133, & values were colcubsied wsing
eq 14TL  The material paramelers were tnken From table 1 oand R, the =gve aecir, was
dedermlped Tram infiwrmgd bos inibe references.

Three of the references conlain messuremenls of #. Here the agreement is nol 13 cloze.
The value of # predicted by eq (49)is 0.83. That the agreement with the phonon velocity is better
than the agreement with # is not sorprising. The Limited sensitivity of the detectors used in these
measurements makes it diffieult to obtain accurate determinations of #. The presence of the
“second” nonpropagating mode aggravates the situation; unless the detector is quite sensitive,
much of the light in that mode would be lost in the noise of the detector.

5.2, CCl,

Sufficient data exist for carhbon tetrachloride (CCL) to warrant comparison with the prediction
of the single relaxation time theory. This comparison indicates that only a part of the energy of
the internal degrees of freedom relaxes with a time on the order of 10717 —10-" sec.  Presumably
the remainder of the energy relaxes more rapidly then can be detected by light scattering
experimenta.

The parameters for CCly at approximately 20 °C are listed in table 3. Four measurements
of the phonon speed obtained from Brllouin scattering measurements and one acoustic measure-
ment of the speed of sound in CCl,y are listed in table 4. The caloulated velocities in table 4 are
based un the assumption thai only 75 percent of the internal specific heal is involved in the relaxa-
tion process and that +=25.12 X 10-! sec. This vulue for 7 i= consistent with the aconstlic measore-
memt. The agreement between the measored and calculated values of & is poor. This is nol
unexpected if another relaxation time exists for CCl,.  This would imply the exisience of another
nonpropagating mode which would make # larger than the prediction of eq (47).

Alzo, for CCL, there is a measurement of the width of the Brillouin line. Experimentally
[y = 4 % 10* rad/sec while eq (36) predicts 'y =5 » 10° radfsec if 3/4 of the internal specific heat
is involved in the relaxation process.

TAELE 4. Phoron pelocity and infensity rario; CCL

TaBLE 3. Marerial paramaters: CCly ae 20 °C T
Expetinimral | Caltuldied

Referemce
Parameler Valws Rafarence
Veloooiy| F |Velocity| &
a 1.7TBx WF* pmifeec ] - T
by 5,085 W emlpar 1L} mive mlaen
By 259 % 10T cm!/aec 10 ] W [L.0] 12 0T
£a S0 L e L] [} W |hT Gty .6z
r S12% 100" wec 17 1My T2 Ca a2
n 1472 L] m ot | — ) L
e 1.5 gmfom® L [T BT — poountic
¥ Lia ELIL B P Frh T
The relazatioh thine + was sarlmabed from scoustic messuremesis [19]. The eapenmatis] valocities have been redoced o m " weing dwidF=—X, miaee —deg

[, The velootien were cobeulnoed ualng eq @51  values were caloalaied uning eq
a7y The matarial parumetem were Inkes Brom inhle 3 ond k| the wees eaccor, was
delermined from isdormation s he ralepsnees.
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In a previcus publication [21] we stated that more than one relaxation time exists in CCl,
and therefore the single relaxation time theory did not apply., Althoogh the available dala are
insufficieni to fully verily this statement, the phonon apeed comparison suggests that this stale-
ment is correct.
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