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The recently abwained complete solution of the simultaneous diagenalization of matwrices H & and H in the
hydredynamin diffusion equation has bactcally chenged the diagonal walues ¥ of the symmetric manx H of
hvdrodvnamic interaction between all the beads of the elastic mndom coill madel of the isolated maermmoleculs in
solution. Since these values enter sxplicilly the expressione for the imininsic mress and refractive index tensor in an
altertting Mow field if based on the concepl of internal viecosity of the model one had 1o recaloulate all values
abdpited formerly by using the then penerally accepled erronsous set of ¢y date. The new 14 equal unity
independent of p whi{r, the old values were Jarger than L for small p and smaller for large p. Hanee their oo large
contnliians in the lormer range are partially compensated by their oo emall conributions in the latter region, As
& condisiqueeee 0 1he whole range investigated, belween 3 and 300 chein linka, the differsnces in checlegical and
theoupdivel sffecis ave velatively arnall, up to a factor of 2, although at higher link number the differences tend 1o
gow with the logarithm of this nuember.

Key worde: Bead-spring model; sigenvalues; fegueney vesponse; intrinsic optical lendor: intrinaic siress tensorg

palyrmer solutin.

1. Introduction

The correct simultaneous diagonalization [1]' of H & and
H mairices in Zimm's hydrodynamic equation [2] for the
ideally Mexible necklace model of randomly coiled isclated
linear macromalecule in lTaminar flow makes possible a more
adecuate caleplation of intrinsie stress tensor in all those
cases where the coil is nol yelL noticeably deformed by the
flow. Such & zerm gradienl case includes the frequency de-
pendence of viscosity [2], shear modulus, shear birefrin-
gence, normal stress difference, and aceustic birefringencs
but nol the gradient dependence of these effects.

The main change introduced by the new solulien as com-
pared with the glder incomplete solutions [3-8] i3 not in 1he
eigenvaluss h, of H &

G'HAG=A (1)

which were already calculated correctly in recent papera
[6-8] and even abulated for £ between 1 and 15 and &% =
3/ apfby = .01, .1, .2, .3, [6] and e Z = 250, k* =
3 and £ = 3, A* = (.4 [1]. Here ay, is the hydrodynamic
radius of the bead, & + 1 i3 the number of beads, £ is the
number and b, the rool mean square length of the links. The

! Figpares mn brwcknin indiruie b [ierpbyne eninfevesin ot (ke end of Usis paper.

difference i3 in the diagonal elements 1 of the tensor
F'HG"=N=1 2

which turns out to be the unity lensor with all #, = 1. This
makes the diagonal elements of

M=@'aa=A/N=4A {3}

agree with those of A, i.e. pmp = Ay Here @ is the transfor-
mation matrix of the orgnal 3(Z + 1} dimensional vector r
of bead coordinates tn that of dimensienless normal ecordi-
nales

r=0Qu {4}

and Q7 its tranapose.

Eruation 3 completely differs from the original estimate [3]
that in firsi approximation the diagenal elements of the malrix
M =qual Lthe eigenvalues Apg of the RBouse madel with vanish-
ing hydrodynamie interaction, i.e.

p = hgp = 4sin® [pw/2Z + 1}] {5}
and hence

Pw = h,g,r'.?km {ﬁ]‘
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theory, brobet dines) for 2 = 100 and b* = 0, (1, .2, .3, 4
For A* = { {Reusap (ke waluet of il chemthin coism:Lde.

The subscripls £ and R refer te Zimm and Rouse [9] model,
rezpectively. Such an eslimale was based [3] on the supposi-
lion thal the rransformation matrix G changes so litthe by the
introduction of hydrodynamic interaction that M remaina
praciically the same as in the free draining case, i.e. M =

R

The diagonal elerments v, for £ = 100 and A* = 0{Rouse),
1, .2, .3, and .4 (Zimmj are plolted in figure 1 and the
eigenvalues Ay collecied in 1able 1. The old values of W =
Auz/App are connected with a broken line. They are partially
situated below and padially above #5 = 1, This reduces the
differences hetween the old and new values in quanlities
dependent on ¥, They show up in the excess atresa tensor as
suon us intemal viscosity, defined by the frictional parameter
w, is explicitly considered. The very large old values 2 for
emall p do not matter very much beecayse in gl forrulae they
are multiplied by very small values ¢, = p/Z. Since the
differences belween old and new ¥p, increase with 2%, in that
which [ollows, the comparisen of caleulated effects will be
tainly done for A* = .4, i.e., for a very large hydrodynamic
interaclivn. The differences are smaller for smaller A" and of
course disappear for the free draining eoil with A* = 0 where
.hpg - }hpﬂ,

The new values gty and v do not enter the conventional
expressions [or the inldnsic slress or birefringence 1ensor of
perfectly flexible necklace model so that ni changes occur in
these quantities. The situation iz completely different il pne
eensiders Lhe effects of internal viscosily which depend on #p
[10-26]). They will he mosl conspicuous in the values of
viseosity corresponding to high frequency flow field and in
the phaze angle between the atreses and strain rate or between
the birefringence and strain rate.

The interaclion lensor H depends on the inverse intrabead
distances 177, which makes the hydrodynamic diffusion
equation intringically non-linear. By replacing 1/rg with is
average value {1fry} the tensor H becomes a constant which

makes the diffusion equation linear and hence allows the’

introduction of normal coordinales according lo eqgs (1) ta (4],

Such a procedure eliminates the possihility of any realistic
consideration of the gradient dependence of any rheological
or rhevoptical effect because it dosa not take into aceount the
change of shape of the random coil in flow which expands the
molecule and hence increases Lhe interhbead dislances ry.
Note also that by preaveraging vver all angles between the
velocity and the interhead vector the fonmnulation of W as
function of 1/ry completely evades the consideration of ani-
sotrapy of hydrmlynamic interaction which by itsell yields a
gradient dependence of intrinsic viscosity [27] large enough
lor explaining experimental data.

The general toleration of such a profound medifcation of
hydrodynamic interaclion by the replacement of 1/ry with jts
average {1/ry} makes hard to understand the almost general
ubjections to the introduction of intemnal viscosity as a resist-
ance of the necklace model agains! the deformational compo-
nenl of the normal eigenmodes [28-30). I one accepls the
rathet queslionable linearization of the hydrodynamic diffu-
sion eguation one has to accepl also the nexi siep, i.e., the
concept of internal viscosity based on this linearity and its
introduction in such a mannet Lhal the mathematical \reat-
ment rematns as simple as possible.

In that which follows the cesults of the new theory will be
compared wilh those of 1he old one for A* = 4 and Z = 100
in the whole freguency range and the dependence of the
limiting values for w = = on 2 in the range between 2 = 3
and 300 and on A#* in the range between .1 and 4. In all
cases Lhe ralio belween the inlernal viscosily coeflicient ¢
andl the frictionsl coefficient of the bead /= Gmagn, will be
assumed constant, @ff = 2. Here my is vigsoosity of the
solvent. The subseript 2+ applies o the properties of the
solvent. The corresponding nnn-aubacriptEJ)quantities relate
io solution.

2.  Internal Viscosity

The concept of inlernal viscosity was introducead in order to
express the inability of the randomly coiled polymer moleecule
to change rvapidly its shape [31, 32, 10, 11]. Such changes
occur during the rotation of the macromolecule in a flow with
a rotational component, e.g., the laminar flow with transverss
gradient, when Lhe individusl segmenls are alternalively
passing from Lhe direction of compression o the directian of
exlensien and wviee versa. The divections of maxinum
conpreazion and extension of the volume element are in the
flow plane perpendicular 10 each other. The capidity of
change is given by the transverse gradient which equals Iwice
the angular velocity of the ideally fexible coil which rolates
with the volume element. The other case ia the oacillating
flow field where the oscillation frequency determines the
rapidity of change from compression lo exiension and vice
WEIGH.

in the limiting cases of zevo gradient and zero frequency
the deformation inability of the macromelecule does not play
any role. All the changes occur so slowly that the effects are
identical for completely rigid and ideally Qexible coils if only
their conformational distributions apree with each other.
With increasing pradient andfor frequency, however, the
lime effecis are playing a gradually increasing rele. They are
maximum in the second Newlonian regime cortesponding Lo ¥
— 0 g W —F W,

The rigidily of the macremolecule can be assipned to
different properties of the chain. [t can be caused by the
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Tame 1. Figensaluer Ap for & = M0 and §* = 0 iRevsel, -1, 2, .3, 4 (Zimm)
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energy barrier separating the gauche and trans contormations
which makes any conformational change mare lime consum-
ing than in the case of perfectly soft model [10]. Since the
height of the energy barrier is independent of the viscosity of
the sclvenl itz relative effect a5 messured by the ratio of
internal frictional resistance  causcd by the barrier ard 1he
frictivnal resistance f of the segment decreases wilh the
vizeogity of the solvenl. The macromolecule acls as very rigid
in a lew viscosity liquid, e.g., acetone with %, = .322cPoizse
= 32.2 mNe/m7, and as very flexible in a high vi,snncsit‘v
solvent, e.g., Aroclor with 1 upr 10 100 Paise {= 1 kNs/m¥)
and higher.

Another cauee of slow molecular reaponee 1o the rapidly
changing flow field resides with the conformalional restraints
of the chain which petmil only an inlerchange of gauche and
trans conlormalions [20, 23, 24]. With almost vigid length of
valency bonda this means that moal changes of length and
position of any chain segment require a much larger segment
displacement than formulated in the ideally Aexible necklace
model which does not consider any inhotent limilation of
bead motion. Generally an axial displacement of the segment
requires also some laleral displacement and vice versa. As a
consequence Lhe regisiance of beads to position change is
larger than assumed on the basis of hydrodynamic radius ay.
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The eatio of the so obtained coefficien! ¢ to £ is independent
of solvenl viscosily because ¢ and § are hoth proporticeal 1o
T~ Their ratio just meastves the ratfo of rue diapi:cemenl o
th=e minimum displacement explicilely considered in the
diffusion equation. It seems lo be close 1o 2 for vinyl poly-
mers

The effect of internul viscosity ia farmuolated in the system
af normal modes [10]. For the pth normal mode of deforma-
tion one haz a regisiance coefficient @ p/Z. Such a choice is
reasonable for bath origins of internal viscosily as jusl dis-
cusged. In the firsl case one can argue 1that the changes w
comply with any deformational mode are linearly increasing
with the number of chain atoms beiween subsequent nodes,
i.e., with Z/p, because a conformational change lakes place
with equal probabiluy at any of these chain atoms. This
makes the resistance increase with piZ. Tn the secord cage
the displacement al lower modes can be achieved in many
waye 20 that the actoal lengthening of displacement path is
much leas noticeable than at higher modes where the confor-
mational resiriciions are soon becoming of overwhelming
imporiance.

One inay argue that the whole concept of internal viscosity
con be discarded because i1 is not based on some atrictly
fundamental analysis of chain dynamics. It was indeed intro-
duced in a ralther prugmatic manner which also permitted an
easy mealhemalical lrealinent [10]. Bul it turns out That all
move detailed treatments of Brownian motion of beads or of
correlation between the motion of Iwo or more beads [33-35]
lead to some, often hidden. stalement of moleculzr rigidity
which is needed for the resulls of such a sludy to reproduce
the characteristic rheological features of polymer syslems,
e.g., the non-vanishing limiting intrinsic viscosity a1 very
high frequeney [36-51]. Such a stale of affair acems more 1o
support than o refute the concepl uf internal viscosity in spite
of its more pragmatic than fundamental way of introduction.

3. The Distribution Fundion of the Beads

The contingity equaticn of Lhe ideally Mexible necklace in
laminar flow which determines the distribution function e,
Fit ot Ty resds
V[ — (3Do/bF ) HA P & — Dy H ¥, )

= —adffar. (T)
Here &y = kT/f is the wanslationsl diffosion coefficient of
the bead. By introduction of normal coordinates, eq (4], one

iransforms eq (7] inlo a syslem of £ + 1 partial differeniial
equelions

Vi vy 0y — (3D0/b pup — (D0/ o)y ¥y ]
= —dig/dt (8]

each depending only on the coordinates of the pth eigenmade.

Note that ¥, in normal coordingles hus the dimension 57",

The disiribution lanction of the coil is the product of all Jy,
Piw, £} = dufog, 1) - - - Pglug, o). 19)
The functions Y depend on the kind of flow field v. The Oth

mode does not show up in W because il represents & uniform

translation of the whole necklave which does not aflect .

The introduction of internal viscosity adds 2 viscous 1ype
resislance coefficient ¢, = pe/Z oppusing the pth eigenmode
of the true deformation rate of the coil. This rate is ohtained
by subraction of pure rolational velocity £} % wp from the
tolal deformation rate dwp/d¢. This yields an internal viseos-
ity force [10, 11]

Fip = —(pp/ZNouy/de ~ £F % uglby. {10)

If one introduies this foree in the pth diffusion equation {eq
(8)) one obtains after some rearrangements

(14 v/ ¥, {[Vp — (30 /b phptry + (Vo 5} .
* = (Dofbl Vol = —afon. (11)

The distribution function iy dependa on the kind of low and
on the angular velocily vertor 52

In 4 jet or plane fow with longitudinal gradient without a
rotational flow component gne hes [} = 0. 1o 4 flow with
traneverse gradient, ¥ = Hy,mol the anguler velocily
equals —y/2

@1 =100 — ¥l (12}

for relatively soft molecules which rotate in phase with the
volume element. This is the case with practically all conven-
tional macromolecules if the degree of polymerization iz so
high that a 1ruly mndem coil is formed. Very shon chains,
chaina with a greal many double bonds, ladder 1ype and
multiple strand melecules, however, are more rigid and 1end
to rotate with a non-uniform angular velocity which depends
on orientation of the molecule. I is different from that of he
volume element. Assymptolically, at very high rigidity and
fully extended shape of the macromolecule, i1 approaches
that of rigid bodies, e.g.. rods or ellipsoides. la that which
lollows only the case of practically undefermed relatively soft
coils with 1} = — %2 will be considered.

I the steady state Mow with lransverse gradient the pth
eigenmode diatribution function of the soft necklace reads

bplfs. Np, £p) = (&)EJZ(M)”’

T 1+ gt
e (LA 0+ B - B Bl

1+ 8,8 + Bl + 1+ B7HY)
Ba = vbe' [6De)p
85 = Bull + vtnlf): (13)

The index p runa from 1 to Z. The value 0 i3 excluded.
Wilhout internal viscosity, ¢y = 0, ene has 8, = 8 and one
obtains the conventional distribution function. Note that oq

. {13} and the distribution function eq (6.1} in Ref. [1] refer 1o

different flow fields: ¥y 0,0} in the former and ¥ z,0,0) in the
latter case.
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Equation (13} explicitely containg the diaganal terms Ay,
fp and ¥, In the averagea (dyadie formuolation)

{#TArY = bl MU} = hy? ;_11 paln) (19}

which sppear in the intrinsic slrese and oplical lensor the
coelliciznts g2, drop completely hecause the averages (v 5}
are propetlional W 1/ue The cocllicients vp, however, re-
main in ' as long as ¢ F 0. As already mentioned they are
equal to unity (new theory) while formerly they were approxi-
mated by (Az/Ag)y = Ap(8*)/Ag(h® = 0) % 1 {old theory),

In the oscillating Mow field the gradient is a lunction of
time

{15}

The amplitude ¥, is 30 2mall that the molecule remains
praclically undeformed so thal the zero gradien! sigenvalues
Ag and diagonal elements »p, caleulated for the coil at reat,
are applicable.

¥ =y,

4. The Intrinsic Stress Tensor
In dyadic fornmulation the intringic stress tensor reads

T — o,

N
7 FF (11)

[&] = lim
P

Here ¥ is Avogadro number, M is molecular weight, and F is
the vector of forces exerted by the beads of the necklace

muidel on the flowing liquid. One has in the apace of normal
coordinates

F = {1 + N /)G [(34T/bo) Mt
+ boply — 02 X w) + (kT/h) ¥ ln ] (15)

which yields
[e] = %[3#7‘{“1“ )

+ b2u iv — §E X )} + AT™ ¥ In 9]
(1 + N /1!

(1o)

The 1ype of laminar flow shows up in v and {3.

Thelivei]inear coordinate averages in eq {16) can be derived
from the diffusion equaltion, g {11), by multiplicalion by 2.
&gl -+ + and integration over the whole space.

5. Flow With Transverse Gradient

In the case of laminar flow with ransverse gradient v +
‘Wy,0,.0], ane obtaine the sat of linear differential equalions

E% — 13k — 205Y(L + vp/2WEume) = -1, {2/ dt
{Eattp) — Tp Yt/ 26 — To¥(1 + Voo /20 () = —71p o oy )fde
(%) = vo/3hp + TV ppl &t} = —7p dimg?) /el s
{Npbs} + TV varo/ U okn b= —Tr d faplp Mt
{857 — vpfAhy = —7, d{EH
':{s-lfp}'i' Tel + ”ﬁp{zﬂ{nptp}= _T; d{{pf;p}jd‘
The steady slale solutions which apply afier the complete
decay of transient phenomena read
_ L Yoirglts + Te)f2 ptit
{f,‘*}-—ah[l+ 1 + iwrg (1+1 +2im;)]
- L ¥iTp
{€utip) = 3, 1+ e’ P -
(18)

{ni>=§[1

1
{;pg} B ptp
(Roks) = Lofnt=10

101

_ ol — )2 (1 . Gt )]

1 + oy

1 + 2iewry,
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The averages are cut off beyond the lowest power ¥ which is
needed lalet in 2evo gradient expressions for intrinsic visoos
ity. notmal siregs difference and birefringence. These aver-
agrs have to be inserted in the eapression for the intrinsic
slress Lensor.

[o] = (N/MY3AT{u ™M u}
+ (b2 /20 u T, E.o — ATT] x (1 + NS (1%

vielding the frequency dependence of intrinsic viscosily

] = [w1e — il

S T s .
= lim —= = [l /neb

[l 1] ¥ jox
Vp:p.,)
f

TR B
= lirn
o—} ms

- ﬂ%—z (%= @+ 2% ) (14

RT
M,
_ R
- Mn,

2 1 + éwith — 7p)
T
P+ i)

([ + iV — il — D)o

tan &, = (11 — IIOXE + 1V). (200

The absolute value of intrinsic viscosity [RLMNSRT and the
phase angle &, as funclion of &t are plotied in figure 2 for Z
= 100, pff = 2, A* = .4 according Lo old and new theory.

Ing (T}

A rather similar but not identical expression applies to
intringic streaming birefringence

[AnL* = [An], — [an],

An* = An, I An* — An,

= lim im
r—  COgMyY o CngFyge
RT < 20, | LS
=K-——2 — }/ (1 + —)
M, rz-:- ¥ oo 7

_ 4;17 (n2 + 2)3 N, — ay) 2 Ty
5\ 3n Mn, 1 + iw7,

RT .
=K M_"m{l = illpe

1an &, = [If1. (21}

In the case of dvnamic birefringence An is the dilference
between the refractive indices in the diagonal direction in the
first and secoud guadrant. The extinction angle ¥ = 45° as
long as the gradient amplitode % iz small encugh. The
birefringence [An] M0 KRT and the phase angle &, are
plotied in figure 3 for the same values of £, @ff and A* as in
figure 2.

E]

0
1

!

e
15
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FiGuRE 3. Relative intrinsic  streaming  birefringence

Ficure 2. Relative intrinsic viscosity IRl and phose . [An] f[An]p intrinsic accoustic birefringence [An]gr and plse

angle 3y for 2 = 100, h* = 4, and @/l = 2 as fun
ey aecarding o new (fall line} and old (broken line) theory.

ction gf |

angle 8pfor Z = 100, h* = 4, and ¢ff = 2 s function of
ey according te new (full Hne) and old (broken line) theory.
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The meaning of lhe symbols in eqs (17} 1o |21} is as
follows:

b /6Dohy
o1 + rpgplf)

T;r = Tp = Tﬂ"’p‘prrf

K= 4 (n“ + 2)2(a, - ag)
T 5\ 3n kT

e

7

= 2 /{1l + w’r¥
1= 2 a7, /{1 + wir?)
Il = 2, wPrirh — 1.0/l + ¥

IV = 2 @framh (1 = m)/(1 + atol?)

The sums Il and IV go to zero for vanishing internal
viscosity ¢ —= (. In this limiling case the intrinsic viscosity
und slreaming birefringence are propodional e each other.
Here B is the gas conatan, K iz the rhecoptical cosfficient, n
is refractive index, § is Lhe phase angle between the flow
gradien! and viscosity or birefringence, @ and wg are the
oplical polarizahbilities of the link in the directions parallel
and perpendicular to the link reapectively.

Both definitions of intringie viscosirty and bireftingence in
eqs (200 and {21} tend to make the intrinsic values as much as
possible independeni of the specific properiies of the solvenl,
ie., of 7y and ny which influence the orentational farces,
rigidily and aptical anistropy of the dissplved macromalecule
[52].

It i3 important o note thal as a consequence of Lhe new
terms [T and IV, Le., {75 caused by the intoduction of
inlernal viscosily the expressions for intrinsic viscosily and
steearning bivefringence, e (200 and (21), respectively, are
not proportional to each ather. Hence the rheooptical law
does not apply 1o such a model. In particular [An], cannol be
witllen a5 K[n]we ~ [o]..

The proportionality, however, slill holds in the firsl New-
tonian region, @ — 0, where all the terms but ffw po to zero.
This means that the inirinsic viscosity [9] and the Maxwell
constanl [Ar] and hence \he stress and the oplical tensor are
proportional to each other for ¥ — (0 and @ — {). This is lhe
case in most applications of flaw stress mapping by means of
steeaming birefringence af dilute polymer solutions.

With increasing frequency and finile internal viscosity,
[Ar]. goes o zero while 7L, lends 1o finile value. The
rheoopliczal law breaks down completely. In this second
Newlonian range the intrinsic viscosity is independent of
frequency. One derives from eq (20)

RT &

Tp

Mny =t 1+ flvpen ’

[l = (23)

1.0

Flcure 4. Secand Newionian intrinsic siseasity [n]= as
Sfisnction of number of finks £ and hydrodynuamic inderpction h
at perameter for off = 2.

New {lall Enek andd okl Ibmker linel 1heer.

The limiting values [§].Mn/RT for £ hetween 3 and 300
and i* = 1,.2, .3, .4are ploned in figure 4 for 1he new (full
line) and old (broken line} theary. One sees thal the absolute
values for by = 1 and w4 = Agp /b,y differ by less than &
factor of 2. But their dependence an Z, ie., on molecular
weight, i5 just the opposite for k* = .4. ln the incormect
formulation of the old theory [%]. slightly incresses with Z
while in the cortect formulation of the new theory il decreases
with Z. Such a dependence on Z is much more in agreemen)
wilh experimental dala on polystyrene in Aroclor [44]. The
second Newtonian viscosity (¥]a i= 14.3 cm¥g if one goes
with M from 20,000 to 860,000, The old thewry yields a
steady increase of [R]: with # in sharp disagreement with
these data.

The often used real and imaginary part of intrinsic shear
mgecluilus

[€F = [6Y + {6T = iwm,[n]}

%= O

= o = tim BTy
¥ e~ oy

are plolied in figure 5. The difference between the old and
new theory is relatively emall for Z = 100 bul would be larger
for Z = 304,

The conzequence of the non-vanishing second Newtonian
viscosity, [0]n # 0, is the linear increase of [G]" with @7y in
the assymptotic high frequency region. Such a behavior is in

dect agreement with experimental data on polyslyrene in
Efghl!.r viscous Aroclor [44-51]. These data together with the
zero gradient intrinsic orientation dala of streaming birefrin-
gence of polystyrene in solvents of increasing viscosily [53]
conslitute the main suppart of the theary,
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b

lapwT,
FieuRE 5. latrinsic shear modufi [G]' and [G]" for 2 =

100, h* = .4, and @/l = 2 a5 funchions qf @ gcenvding to
rew {full line) and old (broken fine) theory.

The intringic ficst normal siress difference 1wms ool to be

[Ulrﬂ'ﬁ}t

RT
M =1

(1 + vupn/f)

£ 2

RT Tp
=WV AT orrs (25)

-[1+( L, "’P),_m]
1 + i T

= v | B

(smstts? = maty + 52 UL »)/

while the second novmal stress difference vanishes in all
izolated necklace models with ideal elastic linka independent
of internal viscosity. In applying eq (23) one must nol ferget
that the phaee angle 8; of A* iz dependent only un the factor
of exp (2iee) and that the angle 8; only reduces the constant
vertical displacement to 8 cos 8 bul does not yield any phase
shift.

The tetm 1 in the parenthesia, i.e., B*, keeps the fimsl
normal stress difference positive during the whole peried up
1> very high frequencies. The oscillation is taking place with
twice the frequency of the Bow lield. All these effects are very
much the same as in the case of no internal viscosity. The
difference is mainly in the replacemeni of 7, by T'p and the -

lerm proportional to Ty — Tp The amplitude A of the

oacillating term

A* = A%

RT 7 ( 1 " — r,,]
=2 +
MT”pZ|1+£«mr; 1+ iwr ™

[1 + 20 (2T — Tp)]

— w7, + 27, + dwin, AN, — 7))
(1 + @, 3] + dwPr; 7}

= _Tu ETn

(26)

is proportional 1 the square of the amplilnde of the oscilla-
ing gradient as in the case of no internal viscosity, The value
A/ yEHM/RTY, the phase angle 8, and the frequenty inde-
pendent displacement

2
(8 - cos Su/ 1 NM/RT) = 2 I—Jr%g? @7

are plotted in figure 6 as funclions of w7, forZ = 100 and A*
= .4, Both quantities 4 and & are going to zero with
increasing frequency. In contrast o intrinsic viscosity the
limiting first normal stress difference, at @ — o=, does not
become finile by intreduction of interal viseosity althﬂugh it
pics to 2ere more slowly, as w™! inslead of 2 W™

-

-1 -1 -1 o + +2 +3
Inp wT,

FIGURE &. The coefficient B, the sum B + A, the deffer-
ence B — A of the relative intrinme normal siress difference
[Fn-uklon—Tah = A & + Bfor Z = 100, h*
= dagnd pff = 2asﬁmc:wm of w7, cecording to new [.f'uﬂ
line) and old (broken line) theory.
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&. Flow With Longitudinal Gradient

In jet Aow, ¥ = ¥(—x/2. —¥/2,2) the inlknsic stress
lensor

(o] = %[ﬂﬂu Mu)
+ (#b*/2Hu i —E&, —m, +2q)) + ET1]

(1 + NG

iz independent of cuil rotation in flow because the flow field
has ne rotational component, £ = 0. The bilinear coordinate
averages are derivable from the set of differential equations

(1 + pra)lls"y = v,p/30p = =75 {7}/
(1 + yra¥fomp) = —1p d{Epmps /it

(1 + My — wp/3hg = 1y J,"} et
(1 = yr/2nplel = —Tp dinalpidt

(L = ¥ra){p") = vafBhp = =75 d{{5)/ el
{1 = yrp/2K Lk} = Ak )/ di

Under consideration of the symmetry of flow field one
obtains

&5 = ") = ;i:exp {[t + Grorpfiwle )/}

(28}

4
_Tp

1
x f exp [ + (o7pfitary Jehr's=] d
& = ﬁ- exp (=t — 2037/ iw)e™]/7}}

Hr'p
x f exp Tt — 26reryfions )eéors] dv
[1]

{&atip) = Ngkp} = &olp)=0. (30}

These averages still conlain the ransient which, in the
general case, cannol be easily separated froim the stationary
aolution yepched afier the transient has lapered off (g, 7).

The separation can be performed if Fyrpfoer’y is a0 small
that one can replace the exponential funstion by ita linear
expansion. In such & case one obtains for the stationary
solution

. 1 | -4 gt
"}_E( T‘r"1+l:m:r;,)

3
o (31)
1
2 o + T —— ——
W =5 (14 2300 =5
The intrinsic Tronton viscosily tums out 1o be
[=k. {32}

= [y — ﬂ'u]*f"}"ﬂr
RT & . .
n ;l Bupl{lp = ESW Y + (rovpwe/FIHALE — £5°]]
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3RT (f,,u —at, T -—.—,)
= +
M’Th =1 1+ ELFT;,.S a
Z
aRT
- 3R (F/w+ 3 (1) — 7,)/3 — difw).
=1

My,

The additional 1erm 2 {ri — Tu)/3 is independent of w and
henee represente Lhe Trouton viscosily in the second Newton-
ian range where /@ and Ilfw disappear. As in the case of
conventional intrinsic viscosity, eg (20}, the finile valoe a1 @
= o0 j& a conseguence of internal visgosity, i.e., of partial
coil rigidity. The frequency dependence of [%], and phase
angle 8, are plotted in figure 8 for £ = 100, A% = .4, and
eff = 2. :
The intrinsic birefringence reads

. RT < T _ g2
(Anlh, = K= 2 Suslls® = 6% (38}

which for small amplitude reduces to

IKRT < ) 3KRT ,
[A=]L = et ;1 T/ (1 + bty ) = Mo {I = {I)
tan 8y, = IIfT (34)

This expression differs from the streaming birefringence in an
oscillating flow field eq {21), only in the factor 3. The non-
proportionality belween viscosily and birefringence is again
the consequency of the additional intemal viscosity term in
eq (33).

q 1 2
27T

Ficure 7. Time dependence of 1£:5 = {0} moeording
te eq (30) plotted versus tf2mr' [ for the speciaf case o'p = 1
and a = WTler |, showing the shor duration af transient
effects and the rapid appreach to the esympiotic periodic
sofution.

Thee stakilization in dlower for low w5,
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FiguRe 8. Relative intrinsic Trouwon wiscosity [0l
and the phase angle 8 for 7 = 100, h* = .4, and wf[ = Zas
Suncrion of wTy according to new {full line) and old fhroken
dine) theory.

Acoustic birefringence is in many respecits closely related
1o birefringence in an cscillating jel flaw. The main differ-
ence is the absence of lateral conlraction as represeniad by
—xf2 and —3/2. [n contmst 1o jet flow with constant
specific volume (incompressible liguid) the volume element
subjecied t an acoustic wave is periodically compresaed and
expanded. That means a constant {£.% yielding in eq (34) the
replacement of the facter 3 by 2.

One has

. An
(Bnke = lim o

N wT

= E Kae msin [0z = zafca) — Bae)

F4

N —HuTy
= . K ——— eiu-{!—z.l‘n,b
M 21 1 + iwr)

N
= = Koo ([ — illettt=seice)

W
tan & = 1)1
A (n? + 2n2p 2 e
K,,=— — -
d 5 ( 3n )(P{-sw) toy = as)

lar = pngacfz (35)

Here 2y is the location of the center of hydrodynamic reaist-
ance of the macromolecule, B is amplitude, I;. is intensily
and ¢4 18 propagation velocity of acoustic wave, and p is the
density of solution. The frequency dependence ol acoustic
birefringence and phase angle is exactly the same as in the
case of oscillating jet flow.

The difference between acoustic birefringence according to
the correct new and the incorreet old values b, can be seen in
figure 3 where [An]g. is plotied versus Gy forZ = 100, 4% =
4 and ¢ff = 2. The phase angle &, is idenlical with 8, and

{0
7. Conclusions

The paper presents Lhe caleutation of most of the intrinsic
rheological and rhecoptical effecits of linear homopolymers in
an vscillaling flow field which may be explored experimen-
tally. In the case of rhecoplical effects only the intrinsic
birefringence of the polymer is included. The form-birefrin-
gence i3 completely neglected, The same applies w the
influence of large side groupe which may effect independ-
enlly the optical anisotropy of the segment and ite frequency
dependence.

The introduction of the appropriate ¢ = 1 values inatead
of the old values ¥, = Apafhpg doea nol change drastically the
effects depending on inlernal viscosity. As a mile the ratio
beiwesn Lhe new and old values of intrinsic viscosily, bire-
fringence, and fimt normal siress difference is Joss than 2, al
least in the vange of Z between 3 and 300, With higher Z the
differences increase as a linear function of log 2.

As already mentioned, 1he smallness of the difference is a
conseguence of the peouliar dependence of old #™ on p:
murh larger than 1 al small p and smaller than 1 a1 high p.
Hence the larger contributions in the former pavt of the sums
are partially compensated by the smaller contributions in the
latter part.

The most imporiant changes occur in lhe second Newton-
ian inlrinsic viscosily which is the mosl conspivucus corse-
quence of intemal vigeosity. Heve the dependence of []. on
Z 18 much less according 1o the new theory than it was in the
case of the ald theary.

No calculation of the gradient effecis was attempied be-
cause one knows that in 2 flow with a finite velocity gradient
the randomly coiled macromolecule is deformed with a con-
sequeni change of all inlerbead dislances. This yields a
chunge of interaction wnsor H which leads 1o a inodilication
of all eigenvalues Ay The rest values A, used in Lhis paper
are only applicable lo effects whete an extrapolation to zern
gradient is straightforward. This 1s the case with dynamic
effects where one uses very smull gradienls and coneenirales
on the frequency dependence of Lthe effecta measured. The
situation, however, is basically different in the non-linear
range of gradienl dependence of excess stress and optical
lensor.
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