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Twn idealized models for the praboeat stage: of Liguid droplsta are analysed theorstically, Thess nodels contain

the afecls of tranaicnd beal conduction and e

aporition. [ i asmumed that the droplel surace sres decreases

linearly with time. This essumption necassilates 1he scelution of swving boundary problens. Thess madelt,

howevet, do ol conslder grs-phase masn tmnspod. [nothe Amitc-gradient medel, the tem
droplet and surrounding het gaaes vary spatially and smporally, In the sevo-gradiem

res of both the
I]'begailtmpu'uhlrz

varics spatially and Wnal]h bt the deoplet iempersture: varies only temporally, i.e., tha droplet temperature ia

spatially uniform. Numerical e
Lons, mre

which require sotenaive caleulatione of cofluen hypemm:m': fiarac-
preaemiea] for typecal yalues of the droplet Istent heat and evaparation rate constant. teaperaturs
profile. 5!'!‘-31 by the finitempradinnd wed zeto-gradient models agtee 1o withio 20 pereent of each other foe all canen
e .

Eey words: Condlusni hypengeomeiric funciions; deoplst; moving boadary problem; preheal; imnsiens hesl

conduction,
1. Introduction

The ignition of a droplet of conventional fuel consista
essentially of two stages [1]). During the first o preheat slapge
heat Aows from the hot sumrounding gas 10 the droplet,
causing the droplet temperature to rise and liguid fuel to
evaporate from the droplet surface. In the second stage,
ignition oceurs in the gosecus mixiure of Tuel ard oxidizer
sutreunding the deaplel. The prebesl sioge s dominated by
transient processes and provides the mativation for the sub-
ject of this paper.

Wise and Ablow [2], Parke, et al. [3], and Waldman [4]
have previously analyzed the effects of traneien: dropler
heating by neglecting the syislence of imemal circulation and
by neglecting selected terme in the heat conduction equa-
tiors. In addition they assume that the droplet sudface re-
greeses linearly with time. In a previous publication, Bennett
and Kayset {5] included the effects of intermal circulation hut
alse neglected evaporation and regression of the droplei
surface. We now include these effects in the present paper.

The neglect of intemal circulation can in many inetances
lead 10 gross undereatimates of the hesl transfer rates within
the dmpl:l. Available :xp-:n'.nu:ula] c?i.t:lenl,:: indicates that
i most cases the heat iransfer mie inside the droplet is much
faster than is possible with heat conduction alone. El Wakil,
et al. [6] obeerved vigotous circulation within the dropler and
ghowed that the diplet temperalure iz gniform even doring
the injtia] tramsient perod. This indicates that the rmie al
which heat is transferred to the droplet iz much slower than
the rete of internal mixing. As pointed om by Law [7].
asguming the dvoplat lemperature 1o ba uniform in a zense
circymvents the difficult eask of describing internal circyla-
tion but still includes the effects due to its presence; ihal 18,
unifono  droplet 1emperature represents 1the limii of repid
internal circolation.

Two modeis for the ransient preheat stage ave presenled.
In the firet model, called the finite-gradient moedel, the

[T ImallL | g

i tha wnd of thin paper,

elfects of mansient heat conduction and evaporation with
linear sutface repression rate ave abalyszed, The droplet and
£as ternperaiures vary spatially and lemporally and the effecis
of internal circulation are ected. In the second model,
called the zero-gradiem el. we include the effects of
transient heat flow, evaporation, and internal circulation.
The Llatter in included by assuming the dmplet lemperature to
be temporally varying but spatially wniform as discussed
above, The ges temperamure is again both iime and space
dependent.

The resultz of the finite-gradient and zeco-gradient models
are applied 1o the preheat stage of droplets in hot gases. The
temperature profiles are used to predict the time duration
between introduction of the dreplet into a hol atmosphere and
its reaching & given temperature. [n addition we contpare Lhe
analogaus times predicted by a particularly simple and accu-
rate approximation tn Lhe exact expression derived for the
zero-gradient model,

In the next section we describe the physical agsumptione
for the preheat stage common to bath models. Section 3
conlains the mathemalical description of these assumpiions,
We derive in section 4 the Lemperature profiles of the droplet
and gas predicled by the finite-gyadient model while in
gection 5 we give the comesponding expressicns for the zero-
gradient model. We present in the last section numerical
examples Tot both models. The temperature profiles ebiained
are very similar for both models and are within 20 percent of
each other in all cases examined.

2. Preheat Stoge

Williams has examined 1he problem of the assumptions
urderying droplet vaporivelion and combuetion theories in
some detail [B]. In models for preheating, many researchers
coneides the droplet 10 be a sphere with lempecature inde-
pendent thermal propertics neglect diffusion effects [1].
(thers include thermal diffusion effects but later in their
theoretical analyees neglect some 1arms in the diffusion equa-
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Lipns (3], In addition, most theorelical invesligalors neglect
the influence of gr=vity, forced conveclion, and radiant heay
transfer. Combuation chambers and experimental techniques
such ag frecly falling droplels exist 1o eliminaie pravitational
effecis. Proper selection of some sxpedmental paramelery
such as ambienl pressure and initial droplet size may miti-
mize the other eﬂPects not included in the model for prehear-
ing. Several rescarchers have shown that exeept for the very
heavy fuel oils, radiant heat vansfer fromn the hot gaz or fom
adiacent dropleis is negligible [7, 9).

The nxxilgf:a examined in this paper contain only thermal
diffusion effects. We assume that & spherical liquid droplet of
imitial radiua r = Fap is inserted al time ¢ = 0 inle & hat
atmosphere (e.g.. air). The initial tempersiure of the droplet
sitimei = 08 Tg. The bot gae 18 unbounded and initally a1
& constant tempersiure Toy. For ¢+ > O the temperature at
infinity is kept sl Ty

The inclusion of evaporation demond: that Lthe dooplet
radius change with time. In the present work a linear surface
Feptesaion rate is sssumed:

R} = rio = kot (1)
Ri1) is a direct specification of the motion of the imerface r =
it} with time and &, dencles the evaporation rate conatant. A
self-contained theory would obtain Rit) indirectly by adding
ta the boundary conditions at the intctfare the requirement
that the local vapor pressure be determined o the solulion
process. A moving boundary problem in which Ki¢) is directly
specified falle into the general clasz of problems called
inverse-Stefan problems while those in which it is determined
in the solulion pmcess are called Stefan problame [10]. i
must be streased at this point that ihe soluidons which we will
obtain will be applicable only in those time regimes far which
eq (1) iz an aceurate representation of the actusl surface
CEETEBRICN [ale.

We denote the density, specific heat, and the thermal
conductivity of the dropler respectively by d4 €5, and K 4 and
of the gaa respectively by dp, €, and X; We assume that
Lhese Lhetmal properies remsin spabiolly and lemporally
eonslant during preheat. Io addition, the ambient pressure of
the host gas does not change, Using these and the above
assumptions we seek to compule the dependence of the
temperature Tir, ¢) upon the radisl distance r and time £. In
particular, we shall compute the time requiced for & droplet o
reach a given temperslure.

3. Theoretical Analysls

We first conaider Lhe finite-gradient model. The distriku-
tion of temperature within the systein is governed by the
Fourier heal conduction equation for the case in which the
isplhermal surlaces are concentric epheres. Let Tylr, ),
Tolr, ¢}, af = (Kofdgly), and af = KfdfLp) denote the
temperaturee and thermsl diffusivities of the dropler and
gurrourding zas reapectively. The poveming equation for g =
Jend O = r < B {inzide the droplet) reads

8Tdr ) _ (8Talr ) 2 Mdr o)
e _“‘%( PERE &r]

(2)

and fort = 0 and v > R (outside the droplet)

aT(r, £} BTr, ) 2 oy, :})
= -
de af,{ art ro o @)
The quantity Ri¢} specifies the motion of the interface with
time iz given in 2q. (1}

The sperification of the boundary conditions eompletes the
;ﬂt:::mnt of the problem. The temperature T{r, {] has the

Tadr, 8l = Taaord=r < Rand: =0 (4]

andl

Farh=Tyfoer = Randt =0 {5)

arnd it becomes for e >

_[Tdr.0for0=r<R
i) = {T,(r. Hiorr > R.

The lemperature ja finite everywhers, namely T(0, 1) is finite
end

lim Tyir, t} = T {6)

The By meliny condilion thal 6o heat flyx sxista at the center
of the droplet in

dT A0,

SLE L (7)
ar

ITAD, £)f8r is of cowrse 1aken  mean Lthe partial derivative

ol Tdr, i) which respeel lor evaluated at v = O, The problem

statement for the finite-gradient model is completed by twa

conditions a1 the imerface r = R which march the 1empera-
ture and heat flux

TAR™, 6] = TAR*. 1) (B)
TR 1) aT{RY, ) ARt}
Ke o TR tleda (%)

whera R* = lim (R * {} and L is the lxieot heat of vapori-
L=}

zation per unit mase of the condenasd material. From eg (1)
we nole that dR/dt goes off o infinity near the end of the
droplel liletime a0 that Lhe difference between the thermal
conductivities times the temperature gradients must become
unbounded. Maore will be zaid about 1hizs point in subsequent
gcclinns.

We hind it {:unveni.enl at this pi;lin.t to :Illil.'!Dd'I,l:l! dimetigion-
lesa quantities which in this fﬁrer will be denoted by Greek

leners. They are defined as tollows:
(1} The time T is chosen to move the sinpular point of
complete droplet evaporation ko infinity, T = 2a%fk) In

{rgof R}, As the evaporation rate constani &, L+ zeTO T
reduces ta 7y = aé:,f:i goes

(2} The distance ecordinaie 9 iz chosen o remove the time
dependence of the position of the boundary, 1 = r/R{e).
Distance i3 thus measured in instantaneous droplel radii.
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Whenk, =0, % = %y = rfrae
(3). The dimensionsless 1emperature ratios are defined by

Ofn, ) = (Tdr, &} — T}/ {To — T,
E,{m ) in the fraction of the maximum pusalble temperatyre

rise. [n addition, we defive & = agfay, B = K /Ky, € =
kefad, and A = Lyf[CaiT o — Twll.

=g or g

With the above definitions, eqs (20-(9) become

3040, 7) _ #0401, 7)
ot gt
2 _emydBqm, T}
+(; 2) o {0=m<1) (10)
JLE T i Y
dr it
2 _ olem)i6,(%, 7) 11
* (ﬂ 2 ) dn (> D
Ouln, 01 =1 {13)
lim O4n, 1) =1 (14)
L ]
aﬂd[ﬁ. T} _
" (15}
041", 7= 641% 1) (16)
301% ) _ 0NN 1), o (7

on a9

Equations {10}-{17) are the complete stztement in dimen-
sionless form for the finite-gradient medel.

Wa now coneider the 2ero-gradiemt model. A was men-
tioned in section 1, the inlermal circulation inside the dooplet
may be sufficient in many cases to mainlain 2 spatially
uriform temperature within the droples. When such condi-
tions prevail, the Fourier heat conduction equation for the
droplet, eg (3, and the boundary copdilion (9 are replaced
by a single heat transfer equation. The lempersiures in the
zero-gradient model are denoted by Tiayle) and Tl £} for
the droplet and gas respectively. For the cage in which tbe
dropler temperature iz apatially uniform, Tir, 68 = Tpl1) =
Tolf*, 1) = TR*, ) and the hest flux inie the droplet,

aalt)

[-l-er“K:-i}ddC.;—f{-’l-m'F] (18}

must equal the heat flux from the gas. Equalicns {2) and (¥
are thus replaced by the following equality

daCaR dTolt) | 8T, {R*. 1) dRiz)
3 di =Ky a1 el (s}

Equaticns (3118} with Tlr, ) and Tolr, ¢} replaced respec-
tively by Tgd) and Tpir, 1) and eq {19) are the mathematical
etstemsent of the zero-pradient model.

In lerma of the dimensionless quantities iniroduced ear-
lier, the working equations in the zero-gradient model are

o2l 7] _ 30y, 7)
& g
2 afentdBgin, 7)
+ (n P (B>1 (20
., {0) = (21}
B,.n, 0) =1 {22)
lim Qgn, 1= 1 {23)
]

Bglrl = 8,414, 1) 24)

148,{1) _ 98,(1% 1) _Ae
3 4 7 an 2 (25)

In the next two sections we solve the equations For the
finite-gradient and zero-gradient models by taking their La-
place transforms. The Laplece transform of the reduced
teraperature B(¥), 7 is de‘nnted by

By, o) = [ exp {—or)B(y, Tdr (26}

wheve o is [he dimensionless Laplace transform varighle.

The Bromwich integral

¥+l

O, = hm v exp [ordMn, ohic (27

m Jr—m

expresses the temperature in terms of the Laplace ransform.
The quantity ¥ is chosen sulficiently Llarge =0 that the integral
J& exp (—otiB(n, 7)|dr

exista,
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4. Finite-Gradient Model
From eqs {(2/=(9), the Laplece transiorm of the mduced

temperature Gy, 1) satislies the following equaticns and
cetditiona:

cr]dl,b;-, o) =} O=xn<1)

{28)

n 2 Jim

+at=0 (n>1) (29

a4 (0, o)
=0 30
an (30)
lim ®yn, o) = 1 (31)
Pl o) = B l*, o (32)
b1, 0} _ ﬂ«3"1-.{1 LG he (33)

A an 2o

To solve the zubsidiary differential eqs (28] and {29}, we
make & change of varable. Letting §{ = en%/4 gives

e+ (G2 ———]‘va:;,a} (34)
[.f.gﬁ + G - m - —]‘P,{a’{. i)
+ g =} (35)

WAL, 0) and Qolm, @) = Vyet], o).

The operator in aquare brackets is the confluent hypergeomes-
tric differential operator and eqs (34) and (35} are confluent
hypergeuneiric differzntial equations. We obilain the general
solutions 1o eqs (28) and (29) as

Din, o} = AM (o7« 3/2, enfid) {36}
+ BUia/e, 372, en/4)

where $4im, o) =

for the droplel and

Dyin, @) = o' + CMioie, 32, aleytid)

+ DUiafe, 3/2, dtenyfyy (37

fiur the kol surrounding gas. The quantities Mg, b, 7) and
e, b, z) are wo independent solutions o the confluent
hypergrometric differentisl equation and are called confluent
hypergeometric functions. Their most useful general proper-
ties may be found in Chapter 13 of Ref. [11].

The constants A, B, £, and I must be determined rom the
condilions (30)={33). The conditicn thet no heat fux exisis at
the center of the droplet requires that B = O since Lo fe, 3f
2, en’/4} is not well-behaved at 9 = 0. Similarly, the
condilion thal the reduced gaa lemperatute goes to umily at
large: distances requires € = 0 since Miofe, 3/2, ofentfd) is
nal well-behaved at inlinily. The two remaining conditions at
the inteffacial boundary v = 1 conslitule twe inhomogeneous
simullaneous equations for the remaining congtants 4 and D,
Solving these, we obtain the Laplace transformed solulions
for the reduced temperateres:

s[wpov(l o1 2 5) - ra (2 LIS T
D4n. ¢) = s (38)
for the droplet, and
e Een 3 o PG )
Tyl o) =" = o H{o/e) (3%
frr the gas wherc
o= wu(fon SN E S om0 2 T o



The dilferential relalions of M and {7 have been used in
detiving these equalions. These expressions have been de.
rived in a [orm suilable for going o the Llimil of 2er0 evapora-
tion rate constant, € = 0. The correc] limiting cases may be
tound in Rell [6] atd the details of the limiting process in

ﬂ.PPEI'.IdIII A..
The reduced remperature disiributions of the dropler and

surrcunding gas are obtained by evalualing the Bromwich
integtals of eq (8):

1 il
€y, r} = ll_:: St L_m wigexp (o7, vldo. 41)

To evaluate the Bromwich integrals it is fisl necessary o
investigate the nature of the integrand exp (oribin, o). Ne
digtinction will be made in thia discussicn between the

droplel and the gas as the integrands in both cases exhibil the
same general properties. First of all, exp (i, o) is a
single-valued, analytic function of o excepl at ils singulan-
tieg. [t hae a simple second veder pole at ¢ = O and an
infinily of real, negalive simple firsl order polea al the zeroes
of Higje) given in eq (40} Ta show that H{a fe] posseszes no
complex, imaginary of posilive zeros s sbmighl-loreward.
General methods For locating such zeros may be found, for
example, in Carslaw snd Jueper [12] and Ince [13].

We now evaluale the Bromwich imegral. We complete the
contour of eq (41) by a large semicireular are in the Jelt-hand
complex plane and Lake 7y to e an athilranly small positive
number. The final educed tempersiure distributions are then
obtained by applying the Cauchy Residue Theorem and
letting & and the radiue of the large semicircular arc tend 10
infinity. The intepral along the large semiciveuler are van-
ithes and we find

au‘(p. 3 i‘)
B4, 7) = H;]} ]:H:Lﬂ} agip} - :p .
o=n
3 e
- L[IB’I:F*-‘—E—] +nc*ﬂ[.-’(1 zi {:j)'- EMJ i42)
it '
_exp (Ep.r}[p,u’ﬁﬂ(p. +1, ; n;j) - H-f(p..,2i1 ‘?)]H(pn;. m‘;’4)
) PIRTTPSYEY N
and
Mg 2 €
Oyn. 1) =1 + H:ﬂ}[ ;{;} ﬂ?_::}L._ 314|M(p31: *)
o=
vfp, 2 LT
_ ’ (p zap b )i —2.41(1, zi 5—) —3&.11'] {43}

exp 1€P.ﬂ[2paﬂ(p. +1, ; 5) + sw(p.. 2 . f]]U(Pn.:; . a“fﬂ’ﬂl)

2

p* ¥ (P)/0plamp,




where Hip)=0,n=1.2,3---;
Hip).

We pause to make several cumments about the expreseions
obtained for B4, 7} and A7, T Both contain a term
proportional 1o the reduced time 1 which 15 & consequence of
the second ceder pole a1 @ = 0. As mentioned after eq (9,
the choire of linear surface regression rate implies that the
difference between the thermal conductivities times the tem-
perature gradients evaluated at the interface goos to infinity
at large timea, By large times of course, we mean times close
to the emd of the deonier’s lifetime. These are times for which
the linear suriace regression tate of eq (1) iz no longer an
accurate representation of the true physical situation. For A,
€, and 7 of the orders of magnitude of interest here, the linear
tetmn in T may b consideved an antifsct of the model end
makes only a very small contribution o the redueed tempera-
tures. We remark alse that egs (42) and (43) are nol sullable
for poing directly to the limit € = Q. Further discussion of this
poinl may be found 1n appendix A,

In section & are presented plots of S41, 1) versus T for
typicsal values of the dimensionless quantities A and €. In the
next section we derive expressions for the reduced rempera-
tures for the zero-gradient model.

5, Zero-Gradiant Model

i.e., the pg are Lhe zerpe ol

The analysis for the zero-gradient model is mathematically
very similar to that for the finite-gradient model and will nol
be quite ax dewiied. Equstion: (200425) are the working
equalicns for the zero-gradient model. The Laplace trans-
formed system of equations s

[$+(E_u‘ﬂ)1_azﬂ, Bt 31 + o = 0 (44

n 2 jog
lim & in, o) =1 {45)
L 1]
Qo) = P01 @ {46)
o _ 0Pl o) e
E D) = 'B—__-_'_ﬂ‘r} . (47}

The general aolulion to the differential eq (34) which zatisfies
the condition [45) is
d_in, o) = ol + Alfafe, 3/2, afen®fa)  (48)

Combining eqe {46) and {47) ta eliminate B o) yielde the
relation

ullt, @) _ Ae

o 5o 49)

%w,.ut::h B

which iz then used to determine the aingle unknewn constant
A of eqg [48). Doing Lhis yields the Laplace ransformed
reduced temperature distdbutions

Dyfa) = Bl o) {50)

for the droplet, and

&, (n, o} = o~
_ 2o+ dliic/ e 372, ale?/a) (51)
o lio/e}
for the gas where
Hofe)=2U(afe 32, ole/d) {52)

+ 381 + o/« 5/2, ofe/4)

Thesa expressions have been derived in a form suitable for
going 1o the limit € = 0, which represenis the nonevaporative
problem solved in Ref, [G]. That they in fact reduce to the
correel limii ia shown in appendix A,

All that remains to be done is 10 evaluate the Bromwich
inicgral of eq (8) with B(n, o} = P in, &)

il

1
8,07, 71 = lim = exp (oriPoln, oida. (53}

Hm?‘—ﬂ

The same general comments made about the comesponding
inlegrands in the finlle-gradient model are appliceble here
aleo. We complete the contour by a large semicircular arc in
the left-hand complex plane, apply the Cauchy Residue
Theorem and let & and the redivs of L{e semicircular are tend
to infinity. Following this seqpence of slept wene find

B4lr) = B,(1%, 7 o
arvd
_ 1 [3r dipl
Oyln. 7}=1+ f{ﬂ}[f{m ip fmg
— = 3x 002, Eh’EEI;:l afen’4)| 3;:&1‘] (55)

-t

_ 5 splennp.t 3NU{py 3/2, ofey'/d)
p’n“[ﬂlr’raplﬂ-ﬂ.

nwi

where Np ) =D r = 1,2 3, -+-; e, the p, are the
negalive real zeros of 7{p). Nute that the Livear lern in 7 also
appears in the zero-gradient mode! sclutions.

It is possible io obtain some ve simll::le &nd accurate
spproximalions to egs (54) and [55]-% ernal ditfusivity
of the droplet 18 several orders of magnitude smaller than that
of the surrounding gas. This sugpests that before spplying
the Laplace inversion formoula we 2xpand the subsidiary solu-
tion B {7, o) into & power series 10 & = ga, We cbiain
only the simplest approximation by lertiog o go 1o 2ere in eq
(52):
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lim @.im, o) = $uin, o) (56)

o=l

_ 2ot 3er
Zno(o+ 36)

The inverse Laplace trmansfocm of this remarkably simple

expression yields the following approximations for the re-
duced emperatures in the zemp-gradicnl mood<l.

Oair) = (1= 3o)1 - expi=380) 69

28
for the droplet, and

Galn, 1 =1 — 97" exp(—3p7

~ {he/28m){1 — expf—Eﬂﬂ) (58)

for the aurrounding gas. Mote Lhat the term linear in 7 bas
dizappeared ta the order of approximalion used. However, if
Poain, o) is expanded out to fivsl onder in o, then 5 rels-
tively simple infinite secies and the lingar tenm in T show up
in the wpproximation of Sp{7, 7). Unfortunately, the expres-
sions obtained by letting or go to zero in the finite-gradient
model are much the same as the exact solutions.

In the next section, we prasent plots of B ir) versus 7 for
iypical valuea of A and €. In addition, the timea predicted by

A7 7). B, 1) and Oyl7) for the droplat to reach a given
pared and :l:I.iEm:l.lE:ﬂ:j:.l

temperaiure are com

6. Numerical Exarnples ond Conclysions

In this zection, we give some illustrative numetical sxam-
ples {or the predictions made by finite-gredient and zero-
gradient models. The input data for the caleulationa are 1he
four dimensionless guantitiez o, B, X and £. We take @@ =
0057, B = 0.186 and A = 0.01, 0.055, (.10 and € = Q. 10),
0.55, 1.4, independently, so that there are nine cases, Thess
values correspond roughly to those of medium weight fuel il
in hot air at atmospheric pressure. Typical values of the
physical parameters K, d, and C which yield the chosen
valuee of o and B ave piven in table 1. Intable 2, we give the
valoes of Ly comesponding to A = .01, 0,055, and 0. 10 and
k, comesponding to € = (.10, (.55, and 1.0, The tempera-
ture difference Tgy — Tayp is 1aken (o be 1666.67 K (cotre-
sponding to Fgp = 300 K and Ty = 1966.67 K] and
ay’ and Cy are assigned the values given them in table 1.

Figures 1a, 1b, and lc compare the numerical predictions

Tabe L. Typical saftas of the thertiad conductenty K, demity o, gecific
At C ot comarant velume, and thermal Jiffusivity 8% ohich vield o = agla, =
0057 and @ = KK, = 0.185

Fropenty DCrroplet G
E{)tem = °C) 1,45 % 1073 260 % L
digfem?] .90 LA 1
Cig *C) .39 1.0
aHema) &5 x Lo~ 1, 2

TABLE 2. The volues ofthe droplet latens et of paponzation per grain, Lg,
tg o W weluss of the

e e N o £ Tt o
sempern g b r,.d- T:iliﬁle{n ﬂeﬂmard }und n.’f—d Cy ﬁ:Lipw!'me
wadus piven dn bl B
A La¥g € kdcm®a)
[1A1} iR~ o1 6.3 X 107
0055 21908 .55 3,575 ® "
0,10 30833 1.0 6.5 x 1

of the finite-gradient and zero-gradient models for oil dropiets
in air for & equal to (.01, 0.05%, and .10, respectively,
0417, 7) and B.J7}, the reduced surface temperatures,
are compuled fom egs (42) and [54). It should be noled that
due tn the presence of the linear temm in 7. neither
G417, 7) nor O fr) reach steady state during the droplet
litetime, Even if that term were absent, 99, 71 would never
become uniform throughout 1he dropler. We must stress at
this poirt Lhat the apparent large difer=nce betwesn the
temperature profiles for fixed A bur different € iz deceiving,
Although shown on the same graph, the curves sre ploited
versus «Tf2 which iz a function of £, i.e., each corve has s
own distinct time scale. The resudts have been shown in this
fashion for clavity only. If they were alil plotied on the same
scale, real time ¢ for cxample, the entire groop of curves
wﬂuld I.i.E' wELY {:];DEB to ane anuﬂn:r. AH can .hﬂ Sxn fl.'ﬂ\l'l'l Il'lﬁ
figures, G417, 7 and G,(7) are quite similar. Their differ-
ence is greatest when erf2 ia small. This is to be sxpected.
The thermal pradients ingide the droplel are latges) neor the
begirtnirg of ils lifetinie and for such times the approxima-
Lions of Lhe zero—gradient model are more suspect, Although
not pletted, the simple approximation Ot} vo ©gdT), ob-
tained in the lagi eection, iz an extremely pood one as long as
erf2 is neither oo large wor too small. The diference be-
tween B.07) and G4y7) is less than shout 15 percent in the
worst case (A = (] snd £ = 1.0) and much smaller in the
other cases for the 7's we have conzidered. Due to i1z simple
analytic form, accuracy, and ease of mathematical eomputa-
tion, we sospect that B,u(t) is potentislly o very usaful
expression for analyses of the inilial preheat period of drop-
leta in hot atmospheres.

A quantity of interest in the design of combustion cham-
bers is the lime requived for fuel droplet 10 reach a given
lempayature T Let e dencte this time by ¢, and consider g
fuel droplet with the same physical parameters given in 1able
1 and an initial radius g — 5ﬂ fLm. Fur il]usl.rati\'c pur-
poses, let ug assume that Ty, = 550 K, the initial drople
temperatare Fgy = 300 K, and the inilial gas temperature Ty
= 1666.67 K. The droplel reading Ty, comesponds to o,=
0.15. Using the data displayed graphically as figs. la, 1b.
and lc, we compute the times required for O 1o inerease from
zero 10 0,15, The reaulta are shown in figure 2 as a plot of ¢,
vargus £ It can be seon that the times, 1, predicted by the
finlle-gradient and zero-gradient models are within about 20

rcend of cach other. For comparison, the £.'s predicted by
gdulf} are alao presented and are sesn to be within 10-20
pereemt of those predicted by O,47) ae long as € = 0.55.
Figure 2 aleo provides an extremely erful croes check on
the analytic and numerical resulta of thie paper and theae of
Ref. [9]. By solving a wtally different pmgilem, Bennet: and
Kayser [9] obtained the times £, [or the case of ¢ = 0. These
ure the points on the t-sxia of figure 2, By extrapolating the
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rezulis obtained here for ponzers € to € equal to zero, il can
be seen that the resulis are in agreement and this indicates
tha this work and that of Ref. [9] are intemally congistent.

Fi 3 containg a plot of the volume faclion of the
droplet that has evaporated away by the time t = £, versus €.
For € = 0.1, an evaporation rale constant fairly characteristic
of the initial preheat stage, the volume fraction evaporated is
lena than 5 percent. If € is fairly small, 1his pechape justifies
negleeting evaporation and surface regression rate in analyve-
ing the initial dreplet prehest stage. A faifly decent approxi-
mate procedute lor predicting the times £, and the droplet size
at t =t 19 to neglect evaporation, compute the time required
for the droplet to reach a given tempemture, and then o use
that time and & relation like eq (1} ta calculate the volume
fraction evaporated.

The authors thank members of the Applied Mathematics
Division and the Compater Sciences DHvicion at the National
Bureau of Standards for their assistance in preparing and
using cemputer programs. They have henefited from helpful
discussions with T. [} Coyie, K. G. Krieder, and M. B.
McNeil. Oow of us, Richard Kayszer, Jr., gratefully acknowl-
edges support from the National Science Foundation.

7. Appendix A

In this appendix, we show that intermediate resulls spch as
ihose of eqs (38) and (51) reduce Lo the convect Limite as €, the
reduced evapgration rate constand, goes to zerc. We aleo
make same peneral remarks concerning this limiting process.

The resulta of the € = 0 problem comrespanding Lo eqs (38}
and {51) will be denoted by a superscript '0" and are [6]:

4

-1ty /r g

o
)

1

[ |

o 01

05

10

Focume 5. Fofume froction of & droplel thar kax staporabed In the time t,
pirpied a3 o functios of £ for Luions I

Then rJamerd circlem aal

el bl Lk wre i 1hee saiiim Lerd muacedbed |
cable | med e Erritinl deopley i, « g in #0 em,

Bl + ac'® sinh{at'tqg

Pl ) = B + 0™ — 1F sinb 0¥+ o7 cosh 0]

for the droplet in the finite-gradient model and

Dlhine, ol = 0 — exp[— arn,— 11/ molo + 3Baa’® + 387]

for the gas in the zero-gradient model. The quantitics 1y and

Ty are defined in section 3. We use the relations [11)

dMlz, b, 2)fdzr=aMa + 1,6+ 1, 2}/E

dliig, by oifdr —alifa+ 1,6+ 1,3}
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1o rewTite eqs {38) and (51) as

Pan, ot =

il 3 bR
a{i' ez’ ETD)‘ U(aaﬂ: (Egji[}( ?L"‘"") -1]
(20 + 3eNU{of & 3/2, a’en?/4) {A6)

din, o=~

Again from Hef. [11] we obtain

lim [Mie, b, 2/a}/T(5)]

{A7
= ME-liehf, (9,113 }

lim [T(1 + & = 8Wia, &, z/a]
[ o ] {AB}
—_ 2:”:—”%'&_ {2: IJ‘ZJ

where f and K are modified Bessel functions. Using these iwo
limiting expressions, we find

lim M{ate, 3/2, enf/a)T13/2)]
g ]

A
2 ginh (oVing #9)
v
lm r(g - ;—)U{aff, 3/2, a=n,=;41]
(AL10)

2 I exp{— angr!®)
- gt '

Multiplying the numerator and denominator of eq {AS) by

I"(E - -21—) / l"(;—), substiluting the msulte of zqs. {A%) and
€

(A104, replacing dfdn by dfdvy, and rearranging the result-

ing expression yields eq (Al}; thal is

lim dyin, o) = Pin,, oh

—il

(All}

Multiplying numerator and depominator of eq (A6} by

o 1 .
F(: - E) and then perfarming the same sequence of opera-
Lobe as for the finite-gradient model leads to eq (A2)

lim B, (3, o) = DLAm,, ). (412)
=+

¥ Y aagddnUicse, 372, of %84y -

alilofe, 3/2, ofe/4))

The zame general procedure may easily be used to show that
alher intennediote results also tend 10 the eorrect limit as «
EQEs (0 Torg,

It in the imtermediate resulls which may be checked snd
nt the final resuliz abtained by evalusting the Bromwich
integrals. II is nol permdeaible, as may be verified by trying
it, to iake the expressions By, 7) and Oyin, 1) of eqe (42)
and {33} to the limit of € being e uhl'.nm
B&(r_l., gl and :;["1‘0- Tgl. This limiting process s itn-
proper for the fellowing reason. Inspection of eqs (A1), (A2],
{A5) and (A6} shows the [irzl two to be double-valued func-
tions of & with a branch peinis &1 o = 0 and the Last twe 1o
be single-valued analvtic functions of o. As one proceeds 1o
the limit of zere %, an infinity of simple first onder poles
coalesces into a branch point a1 the orgin, ¢ = ). The
evaluation of the Bromwich integrals leading to G4, 7) and
B,.7, 7 is thus anly valid for nonzero €. The expressicos
representing g, 7} and Bgd7, ) only do 2 for nonzers &
and this eg;lams why it iz impenmissible, in fact imposaible,
to ubtain G%{ny. 7o and SN o} frem them by any lim-

thng proceas.,
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