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Two idealized models for the preheat stage of liquid droplets are analyzed theoretically. These models contain 
the effects of transient heat conduction and evaporation. It is assumed that the droplet surface area decreases 
linearly with time. This assumption necessitates the solution of moving boundary problems. These models, 
however, do not consider gas-phase mass transport. In the finite-gradient model, the temperatures of both the 
droplet and surrounding hot gases vary spatially and temporally. In the zero-gradient model the gas temperature 
varies spatially and temporally but the droplet temperature varies only temporally, i .e., the droplet temperature is 
spatially uniform. Numerical examples, which require extensive calculations of confluent hypergeometric func­
tions, are presented for typical values of the droplet latent heat and evaporation rate constant. The temperature 
profiles given by the finite-gradient and zero-gradient models agree to within 20 percent of each other for all cases 
examined. 
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1. Introduction 

The ignition of a droplet of conventional fuel consists 
essentially of two stages [ l ] 1 . During the first or preheat stage 
heat flows from the hot surrounding gas to the droplet, 
causing the droplet temperature to rise and liquid fuel to 
evaporate from the droplet surface. In the second stage, 
ignition occurs in the gaseous mixture of fuel and oxidizer 
surrounding the droplet. The preheat stage is dominated by 
transient processes and provides the motivation for the sub­
ject of this paper. 

Wise and Ablow [2], Parks, et al. [3], and Waldman [4] 
have previously analyzed the effects of transient droplet 
heating by neglecting the existence of internal circulation and 
by neglecting selected terms in the heat conduction equa­
tions. In addition they assume that the droplet surface re­
gresses linearly with time. In a previous publication, Bennett 
and Kayser [5] included the effects of internal circulation but 
also neglected evaporation and regression of the droplet 
surface. We now include these effects in the present paper. 

The neglect of internal circulation can in many instances 
lead to gross underestimates of the heat transfer rates within 
the droplet. Available experimental evidence indicates that 
in most cases the heat transfer rate inside the droplet is much 
faster than is possible with heat conduction alone. El Wakil, 
et al. [6] observed vigorous circulation within the droplet and 
showed that the droplet temperature is uniform even during 
the initial transient period. This indicates that the rate at 
which heat is transferred to the droplet is much slower than 
the rate of internal mixing. As pointed out by Law [7], 
assuming the droplet temperature to be uniform in a sense 
circumvents the difficult task of describing internal circula­
tion but still includes the effects due to its presence; that is, 
uniform droplet temperature represents the limit of rapid 
internal circulation. 

Two models for the transient preheat stage are presented. 
In the first model, called the finite-gradient model, the 

1 Figures in brackets indicate the literature references at the end of this paper. 

effects of transient heat conduction and evaporation with 
linear surface regression rate are analyzed. The droplet and 
gas temperatures vary spatially and temporally and the effects 
of internal circulation are neglected. In the second model, 
called the zero-gradient model, we include the effects of 
transient heat flow, evaporation, and internal circulation. 
The latter is included by assuming the droplet temperature to 
be temporally varying but spatially uniform as discussed 
above. The gas temperature is again both time and space 
dependent. 

The results of the finite-gradient and zero-gradient models 
are applied to the preheat stage of droplets in hot gases. The 
temperature profiles are used to predict the time duration 
between introduction of the droplet into a hot atmosphere and 
its reaching a given temperature. In addition we compare the 
analogous times predicted by a particularly simple and accu­
rate approximation to the exact expression derived for the 
zero-gradient model. 

In the next section we describe the physical assumptions 
for the preheat stage common to both models. Section 3 
contains the mathematical description of these assumptions. 
We derive in section 4 the temperature profiles of the droplet 
and gas predicted by the finite-gradient model while in 
section 5 we give the corresponding expressions for the zero-
gradient model. We present in the last section numerical 
examples for both models. The temperature profiles obtained 
are very similar for both models and are within 20 percent of 
each other in all cases examined. 

2. Preheat Stage 

Williams has examined the problem of the assumptions 
underlying droplet vaporization and combustion theories in 
some detail [8]. In models for preheating, many researchers 
consider the droplet to be a sphere with temperature inde­
pendent thermal properties and neglect diffusion effects [1]. 
Others include thermal diffusion effects but later in their 
theoretical analyses neglect some terms in the diffusion equa-
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tions [3]. In addition, most theoretical investigators neglect 
the influence of gravity, forced convection, and radiant heat 
transfer. Combustion chambers and experimental techniques 
such as freely falling droplets exist to eliminate gravitational 
effects. Proper selection of some experimental parameters 
such as ambient pressure and initial droplet size may mini­
mize the other effects not included in the model for preheat­
ing. Several researchers have shown that except for the very 
heavy fuel oils, radiant heat transfer from the hot gas or from 
adjacent droplets is negligible [7, 9]. 

The models examined in this paper contain only thermal 
diffusion effects. We assume that a spherical liquid droplet of 
initial radius r = r^o is inserted at time t = 0 into a hot 
atmosphere (e.g., air). The initial temperature of the droplet 
at time t = 0 is T^o- The hot gas is unbounded and initially at 
a constant temperature TQQ. For t > 0 the temperature at 
infinity is kept at Tg(). 

The inclusion of evaporation demands that the droplet 
radius change with time. In the present work a linear surface 
regression rate is assumed: 

R2(t) = ^ = ket (1) 

R(t) is a direct specification of the motion of the interface r = 
R(t) with time and ke denotes the evaporation rate constant. A 
self-contained theory would obtain R(t) indirectly by adding 
to the boundary conditions at the interface the requirement 
that the local vapor pressure be determined in the solution 
process. A moving boundary problem in which R(t) is directly 
specified falls into the general class of problems called 
inverse-Stefan problems while those in which it is determined 
in the solution process are called Stefan problems [10]. It 
must be stressed at this point that the solutions which we will 
obtain will be applicable only in those time regimes for which 
eq (1) is an accurate representation of the actual surface 
regression rate. 

We denote the density, specific heat, and the thermal 
conductivity of the droplet respectively by da, Cd, and Kd and 
of the gas respectively by dg, Cg and Kg. We assume that 
these thermal properties remain spatially and temporally 
constant during preheat. In addition, the ambient pressure of 
the host gas does not change. Using these and the above 
assumptions we seek to compute the dependence of the 
temperature T(r, i) upon the radial distance r and time t. In 
particular, we shall compute the time required for a droplet to 
reach a given temperature. 

3. Theoretical Analysis 

We first consider the finite-gradient model. The distribu­
tion of temperature within the system is governed by the 
Fourier heat conduction equation for the case in which the 
isothermal surfaces are concentric spheres. Let Td(r, t), 
Tg(r, t), ad = (KJddCd), and a | = (Kg/dgCg) denote the 
temperatures and thermal diffusivities of the droplet and 
surrounding gas respectively. The governing equation for t ^ 
0 and 0 ̂  r < R (inside the droplet) reads 

—^— = aA—^— + 1— w 
dt \ dr2 r dr J 

and for t ^ 0 and r > R (outside the droplet) 

°Tgjr, t) = 2(d
2Ur, t) 2 &Tjr, t)\ 

dt *H dr2 r dr ) 

The quantity R(t) specifies the motion of the interface with 
time and is given in eq. (1). 

The specification of the boundary conditions completes the 
statement of the problem. The temperature T(r, t) has the 
form 

t Td(r, t) = Td0 for 0 < r < R and t < 0 (4) 

and 

Tg(r, t) = Tg0 for r > R and t < 0 (5) 

and it becomes for t > 0 

Tt A = iTd(r,t){orO<r<R 
H , t ) \Ur, t) for r > R. 

The temperature is finite everywhere, namely Td(0, t) is finite 
and 

lim Tg(v, t) = Tg0 (6) 
r—>oo 

The symmetry condition that no heat flux exists at the center 
of the droplet is 

dTd(0, t) 
I = 0 (7) 
or 

dTd(0, t)/dr is of course taken to mean the partial derivative 
of Td(r, t) which respect to r evaluated at r = 0. The problem 
statement for the finite-gradient model is completed by two 
conditions at the interface r = R which match the tempera­
ture and heat flux 

Td(R~, t) = Tg(R
+, t) (8) 

v dTd(R~, t)_tr dTg(R
+, t) dR(t) 

where R± = lim (R ± Q and L^ is the latent heat of vapori-
£."*° 

zation per unit mass of the condensed material. From eq (1) 
we note that dR/dt goes off to infinity near the end of the 
droplet lifetime so that the difference between the thermal 
conductivities times the temperature gradients must become 
unbounded. More will be said about this point in subsequent 
sections. 

We find it convenient at this point to introduce dimension-
less quantities which in this paper will be denoted by Greek 
letters. They are defined as follows: 

(1) The time r is chosen to move the singular point of 
complete droplet evaporation to infinity, r = 2{ajke) In 
(rdo/R(t))- As the evaporation rate constant ke goes to zero r 
reduces to r0 = ddt/rdo-

(2) The distance coordinate Tj is chosen to remove the time 
dependence of the position of the boundary, 17 = r/R(t). 
Distance is thus measured in instantaneous droplet radii. 
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When ke = 0, 7) = 7J0 = r/rd0. 
(3). The dimensionsless temperature ratios are defined by 

9/77, r) = ( r / r , 0 - r d 0 ) / ( ^ 0 - Td0), j = dor g. 

Qdi7), T) is t n e fraction of the maximum possible temperature 
rise. In addition, we define a = ad/ag, /3 = Kg/Kd, e = 
A^/aJ, and X = Ld/[Cd(Tgo - T^)]. 

With the above definitions, eqs (2)-(9) become 

ded(v, T) d2ed(7,, T) 
dr 

+ 

3TJ2 

^2 ei7\dGd(7), T ) (rf)" dr? 
(0 < TJ < 1) (10) 

a 
,*e«fo, T) _ a 2 e^, r) 

6T â 2 

+ £ - S^> )»> „ > „ 0 l ) 
VTJ 2 J dr) 

must equal the heat flux from the gas. Equations (2) and (9) 
are thus replaced by the following equality 

daCfi dTdz(t) _ dTJfi\t) dR(t) 
— K„ : \- LddcT dt dr dt 

(19) 

Equations (3)-(8) with Td{r, t) and Tg(r, t) replaced respec­
tively by Tdz{t) and Tgz(r, t) and eq (19) are the mathematical 
statement of the zero-gradient model. 

In terms of the dimensionless quantities introduced ear­
lier, the working equations in the zero-gradient model are 

a* 
2dOSz(v, T ) d2Sgz(r,, T ) 

dr dr,2 

\T7 2 J dr, w 

ed,(o) = o 

e«fo, o) = i 

(20) 

(21) 

(22) 

ed(r,, 0) = 0 

efl(7>, o) = i 

lim 0fl(i7, T) = 1 
7J-*0O 

(12) 

(13) 

(14) 

lim Qgz(r), T) = 1 

Odz(r) = egz(l\ r) 

(23) 

(24) 

aed(o, T) 
= 0 

ed(i- r) = efl(i
+, r) 

^ ( i - r ) ^ a e 8 ( i ^ ) _ W 2 

drj dr) 

(15) 

(16) 

i«ied,(T) = degz(i\ T) 
dr 3TJ ~2~ 

(25) 

In the next two sections we solve the equations for the 
finite-gradient and zero-gradient models by taking their La-

/ 1 7 \ place transforms. The Laplace transform of the reduced 
temperature Q(r), T) is denoted by 

3>(T7, o-) = / " exp ( -CTT)9(T7, r)dT (26) Equations (10)-(17) are the complete statement in dimen­
sionless form for the finite-gradient model. 

We now consider the zero-gradient model. As was men­
tioned in section 1, the internal circulation inside the droplet w h e r e a i s t h e dimensionless Laplace transform variable, 
may be sufficient in many cases to maintain a spatially j ^ e Bromwich integral 
uniform temperature within the droplet. When such condi­
tions prevail, the Fourier heat conduction equation for the 
droplet, eq (2), and the boundary condition (9) are replaced 
by a single heat transfer equation. The temperatures in the 
zero-gradient model are denoted by Tdz(i) and Tgz(r, t) for 
the droplet and gas respectively. For the case in which the 
droplet temperature is spatially uniform, Td(r, t) = Tdz(t) = expresses the temperature in terms of the Laplace transform. 
Tg(R , t) - Tgz(R , t) and the heat flux into the droplet, The quantity y is chosen sufficiently large so that the integral 

Jo exp (-orr) |e( i7, r)\dT 

1 Cy+m 

6(7?, T) = lim : exp (O"T)4)(T7, a)da (27) 
8-»oo 2 m Jy-i8 

( 4 7 T ^ / 3 ) ^ C r f % ^ / ( 4 7 7 / ? 2 ) 
at 

(18) 
exists. 
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4 . Finite-Gradient Model 

From eqs (2)-(9), the Laplace transform of the reduced 
temperature Q(r), T) satisfies the following equations and 
conditions: 

(28) 

(34) 

+ or- (35) 

+ o2 = 0 fo>l) (29) 

where <Dd(7j, cr) = ^ d ( £ , cr) and <D„(17, <r) = ^ ( a 2 ^ °"). 

The operator in square brackets is the confluent hypergeome-
tric differential operator and eqs (34) and (35) are confluent 
hypergeometric differential equations. We obtain the general 
solutions to eqs (28) and (29) as 

<t>d(r,, cr) = AM(a/e, 3/2, erf/4) ( 3 6 ) 

+ BU(a/e, 3/2, eif/4) 

ad>d(o, o-) 
dr) 

= 0 

for the droplet and 

(30) ^ ^ = °'"1 + CM(o-/e, 3/2, <*W/4) 
+ JM/(o-/e, 3/2, c^erj2/^ ( 3 7 ) 

l im 4>ff(T), cr) = 1 
T7-»00 

O d ( l - , cr) = <D0(1+, <7) 

(31) f° r t n e n o t surrounding gas. The quantities M(a, b, z) and 
U(a, b, z) are two independent solutions to the confluent 
hypergeometric differential equation and are called confluent 
hypergeometric functions. Their most useful general proper-

(32) t i e s m a y be found in Chapter 13 of Ref. [11]. 
The constants A, B, C, and/) must be determined from the 

conditions (30)-(33). The condition that no heat flux exists at 
the center of the droplet requires that B = 0 since c7(cr/€, 3/ 
2, €T72/4) is not well-behaved at t) = 0. Similarly, the 
condition that the reduced gas temperature goes to unity at 
large distances requires C — 0 since M(cr/e, 3/2, a2€T72/4) is 
not well-behaved at infinity. The two remaining conditions at 
the interfacial boundary r) = 1 constitute two inhomogeneous 
simultaneous equations for the remaining constants A andD. 

To solve the subsidiary differential eqs (28) and (29), we Solving these, we obtain the Laplace transformed solutions 
make a change of variable. Letting £ = €T72/4 gives for the reduced temperatures: 

d<D d ( l - <r) = J&J1 \ d) 
dr) dr) ; - • ( 3 3 ) 

2(T 

*d(i?, cr) = 

for the droplet, and 

$0(17, or) = cr"1 

'M!--!-?)-K'r?Mf?) 
^//(cr/e) 

(38) 

r /cr 5 e \ /cr 3 e \ 1 /cr 3 cferfX 

o»ff(o-/e) 

for the gas where 

, , x /cr 5 € \ /cr 3 a 2 € \ 0 /cr 3 e\ /cr 5 a*€\ 
//(a/e) = 2M ( 7 + 1, - , - ) / ( 7 , -. - ) + 3 ^ M ( 7 , - , 4 - ) ^ 7 + 1,-. - } 
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The differential relations of M and U have been used in 
deriving these equations. These expressions have been de­
rived in a form suitable for going to the limit of zero evapora­
tion rate constant, € = 0. The correct limiting cases may be 
found in Ref. [6] and the details of the limiting process in 
appendix A. 

The reduced temperature distributions of the droplet and 
surrounding gas are obtained by evaluating the Bromwich 
integrals of eq (8): 

1 ry+id 
9(i7, T) = Km — / y-i8 exp ((77)0(17, a)dcr. (41) 

8-*» ATTl J y—i8 

To evaluate the Bromwich integrals it is first necessary to 
investigate the nature of the integrand exp (OT)<I>(T7, cr). NO 
distinction will be made in this discussion between the 

droplet and the gas as the integrands in both cases exhibit the 
same general properties. First of all, exp ((TT)<$>(r), cr) is a 
single-valued, analytic function of cr except at its singulari­
ties. It has a simple second order pole at cr = 0 and an 
infinity of real, negative simple first order poles at the zeroes 
of//(cr/€) given in eq (40). To show that H(cr/e) possesses no 
complex, imaginary or positive zeros is straight-fore ward. 
General methods for locating such zeros may be found, for 
example, in Carslaw and Jaeger [12] and Ince [13]. 

We now evaluate the Bromwich integral. We complete the 
contour of eq (41) by a large semicircular arc in the left-hand 
complex plane and take y to be an arbitrarily small positive 
number. The final reduced temperature distributions are then 
obtained by applying the Cauchy Residue Theorem and 
letting 8 and the radius of the large semicircular arc tend to 
infinity. The integral along the large semicircular arc van­
ishes and we find 

Od(v, T) = 
7/(0) 

dM 

k dH(p) 
H(0) dp 

I 3 er,*\ 

p = 0 

/ 3 a2e\ 

dp 

dp 

p = 0 

+ -vw(i.i. V) -* r 
p = 0 

(42) 

exp (ep 

+ 32 
n = l 

„T) p„a2y3f/(p„ 
5 a2e\ )-^4'f)M^2/4) 
p\dH(p)/dp\p=Pn 

and 

og(n 
l r 3X dH(P) 

#(0)|_#(0) dp 

3 a2eif 

3 \ 
P = 0 

dp 
p = 0 

- 3 A -

/ 3 a2e7A 

dp - 2M{^ h!) ~ H (43) 

p = 0 

- I 
n = l 

exp (epnT)[2pnM(pn + 1, | , | ^ + 3 A M ( P „ , | ,4-)jf/(p„> 9- , a2eV
2/4J 

p2„dH(p)/dp\p=p 
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whereH(pn) = 0, n = 1, 2, 3 • • •; i.e., the p n are the zeros of 
H(p). 

We pause to make several comments about the expressions 
obtained for 0<*(i7, r) and O^TJ, T). Both contain a term 
proportional to the reduced time r which is a consequence of 
the second order pole at cr = 0. As mentioned after eq (9), 
the choice of linear surface regression rate implies that the 
difference between the thermal conductivities times the tem­
perature gradients evaluated at the interface goes to infinity 
at large times. By large times of course, we mean times close 
to the end of the droplet's lifetime. These are times for which 
the linear surface regression rate of eq (1) is no longer an 
accurate representation of the true physical situation. For \ , 
e, and r of the orders of magnitude of interest here, the linear 
term in r may be considered an artifact of the model and 
makes only a very small contribution to the reduced tempera­
tures. We remark also that eqs (42) and (43) are not suitable 
for going directly to the limit € = 0. Further discussion of this 
point may be found in appendix A. 

In section 6 are presented plots of 0<j(l, r) versus r for 
typical values of the dimensionless quantities \ and e. In the 
next section we derive expressions for the reduced tempera­
tures for the zero-gradient model. 

5. Zero-Gradient Model 

The analysis for the zero-gradient model is mathematically 
very similar to that for the finite-gradient model and will not 
be quite as detailed. Equations (20)-(25) are the working 
equations for the zero-gradient model. The Laplace trans­
formed system of equations is 

lim <*V(T), cr) = 1 

**(<r) = <M1+ , o) 

(45) 

(46) 

for the droplet, and 

<bBz(y, o) = cr-1 

(2tr+ 3Xe)£/(o/e, 3 /2 , a2eTj2/4) 
o*I(o-/e) 

(51) 

for the gas where 

I(a/e) = 2 I / (o /e , 3 / 2 , a2e/4) (52) 
+ 3/3a2U(l + o /e , 5/2 , a 2 e /4) 

These expressions have been derived in a form suitable for 
going to the limit € = 0, which represents the nonevaporative 
problem solved in Ref. [6]. That they in fact reduce to the 
correct limit is shown in appendix A. 

All that remains to be done is to evaluate the Bromwich 
integral of eq (8) with <£>(7}, a) = O^TJ, cr) 

&gz(y), T) = Hm — exp ( O T ) 0 ^ ( T 7 , a)d(T. (53) 

The same general comments made about the corresponding 
integrands in the finite-gradient model are applicable here 
also. We complete the contour by a large semicircular arc in 
the left-hand complex plane, apply the Cauchy Residue 
Theorem and let 8 and the radius of the semicircular arc tend 
to infinity. Following this sequence of steps were find 

ed,(r) = e«(i+, T) (54) 

and 

1T3X dl(p) 
eflZ(7,, r) = 1 + — [ — - -

- <P(Jz(o-) = 0 - — 
3 dTj 2(7 

(47) 

The general solution to the differential eq (44) which satisfies 
the condition (45) is 

<M*J, cr) = cr"1 + AU(a/e, 3 /2 , a2er)2/4) (48) 

Combining eqs (46) and (47) to eliminate Od*(o") yields the 
relation 

which is then used to determine the single unknown constant 
A of eq (48). Doing this yields the Laplace transformed 
reduced temperature distributions 

^z(o-) = * 9 2 ( l + , a) (50) 

2 - 3X 
dU(p, 3/2, « V / 4 ) 

dp 
- 3eAr 

p = 0 
] (55) 

- I 
17=1 

exp (€pwr)(2p n+ 3k)U(pn 3 / 2 , a2€7>2/4) 

p2
na/(p)/dp|p=Pn 

where /(pn) = 0, n = 1, 2, 3, • • •; i.e., the p n are the 
negative real zeros of/(p). Note that the linear term in r also 
appears in the zero-gradient model solutions. 

It is possible to obtain some very simple and accurate 
approximations to eqs (54) and (55). The thermal diffusivity 
of the droplet is several orders of magnitude smaller than that 
of the surrounding gas. This suggests that before applying 
the Laplace inversion formula we expand the subsidiary solu­
tion <&gz (17, or) into a power series in a = a (Jag. We obtain 
only the simplest approximation by letting a go to zero in eq 
(51): 
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lim ®gz(r), o-) s 4>„0(T7, cr) (56) 
a-»0 

_ _x _ 2cr + 3 e \ 

2T70<O-4- 3)8) 

The inverse Laplace transform of this remarkably simple 
expression yields the following approximations for the re­
duced temperatures in the zero-gradient model. 

e d 0 ( r ) = ( l - | | ) ( 1 - e x p ( - 3 0 T ) ) (57) 

for the droplet, and 

QJn, T) = 1- r}'1 exp(-3/3r) 

- (Xe/2(3T,)(1 - exp(-3/3i) j (58) 

for the surrounding gas. Note that the term linear in r has 
disappeared to the order of approximation used. However, if 
*&gz(yi °") is expanded out to first order in a , then a rela­
tively simple infinite series and the linear term in r show up 
in the approximation of Qgz(ri, T) . Unfortunately, the expres­
sions obtained by letting a go to zero in the finite-gradient 
model are much the same as the exact solutions. 

In the next section, we present plots of © ^ ( T ) versus r for 
typical values of A and e. In addition, the times predicted by 
©d0?> T)> Qdzi7), T) and 0do(T) for the droplet to reach a given 
temperature are compared and discussed. 

6. Numerical Examples and Conclusions 

In this section, we give some illustrative numerical exam­
ples for the predictions made by finite-gradient and zero-
gradient models. The input data for the calculations are the 
four dimensionless quantities a , /3, X and €. We take a = 
0.057, p = 0.186 and X = 0.01, 0.055, 0.10 and € = 0.10, 
0.55, 1.0, independently, so that there are nine cases. These 
values correspond roughly to those of medium weight fuel oil 
in hot air at atmospheric pressure. Typical values of the 
physical parameters K, d, and C which yield the chosen 
values of a and )3 are given in table 1. In table 2, we give the 
values of Ld corresponding to A. = 0.01, 0.055, and 0.10 and 
ke corresponding to e = 0.10, 0.55, and 1.0. The tempera­
ture difference Tg0 — Tdo is taken to be 1666.67 K (corre­
sponding to Td0 = 300 K and Tg0 = 1966.67 K) and 
ad

2 and Cd are assigned the values given them in table 1. 
Figures la , l b , and lc compare the numerical predictions 

TABLE 1. Typical values of the thermal conductivity K, density d, specific 
heat C at constant volume, and thermal diffusivity a2 which yield a = ad/ag = 

0.057 and (3 = Kg/Kd = 0.186 

Property 

K(]/cm s °C) 

<i(g/cm3) 
C(J/g °C) 
a2(cm2/s) 

Droplet 

1.45 X 1(T3 

0.90 
2.39 

6.5 X 10~4 

Gas 

2.69 X 10~4 

1.3 X 10~3 

1.0 
0.20 

TABLE 2. The values of the droplet latent heat of vaporization per gram, Ld, 
and the evaporation rate constant, ke, corresponding to the values of the 
dimensionless parameters A. = Lj{Ca{Tgo ~ Tdo)} and e = ke/aa

2 used. 
The temperature difference T ^ — Td0 is taken to be 1666.67 K and a a2 and Cd are assigned the 

values given in table 1. 

A 

0.01 

0.055 

0.10 

LS/g) 
39.83 

219.08 

398.33 

€ 

0.1 

0.55 

1.0 

A;e(cm2/s) 

6.5 X 10~5 

3.575 X 10~4 

6.5 X 10~4 

of the finite-gradient and zero-gradient models for oil droplets 
in air for X equal to 0.01, 0.055, and 0.10, respectively. 
0 d ( l ~ , r) and O^( r ) , the reduced surface temperatures, 
are computed from eqs (42) and (54). It should be noted that 
due to the presence of the linear term in r, neither 
0 d ( l ~ , r) nor ©^(r) reach steady state during the droplet 
lifetime. Even if that term were absent, 0^(17, T) would never 
become uniform throughout the droplet. We must stress at 
this point that the apparent large difference between the 
temperature profiles for fixed A. but different € is deceiving. 
Although shown on the same graph, the curves are plotted 
versus er/2 which is a function of e, i.e., each curve has its 
own distinct time scale. The results have been shown in this 
fashion for clarity only. If they were all plotted on the same 
scale, real time t for example, the entire group of curves 
would lie very close to one another. As can be seen from the 
figures, 0<j(l -, r) and QaJj) are quite similar. Their differ­
ence is greatest when €r/2 is small. This is to be expected. 
The thermal gradients inside the droplet are largest near the 
beginning of its lifetime and for such times the approxima­
tions of the zero-gradient model are more suspect. Although 
not plotted, the simple approximation Odo(̂ ") to &dz{T)-> ob­
tained in the last section, is an extremely good one as long as 
er/2 is neither too large nor too small. The difference be­
tween Odzir) and ©do(T) is less than about 15 percent in the 
worst case (X = 0.1 and € = 1.0) and much smaller in the 
other cases for the r's we have considered. Due to its simple 
analytic form, accuracy, and ease of mathematical computa­
tion, we suspect that ©do(T) is potentially a very useful 
expression for analyses of the initial preheat period of drop­
lets in hot atmospheres. 

A quantity of interest in the design of combustion cham­
bers is the time required for fuel droplet to reach a given 
temperature Ts. Let us denote this time by t e and consider a 
fuel droplet with the same physical parameters given in table 
1 and an initial radius rdo = 50 /xm. For illustrative pur­
poses, let us assume that TSL = 550 K, the initial droplet 
temperature TdQ

 = 300 K, and the initial gas temperature Tg0 

= 1966.67 K. The droplet reading Ts corresponds to 0 S = 
0.15. Using the data displayed graphically as figs, la , l b , 
and l c , we compute the times required for 0 to increase from 
zero to 0.15. The results are shown in figure 2 as a plot of te 

versus e. It can be seen that the times, te, predicted by the 
finite-gradient and zero-gradient models are within about 20 
percent of each other. For comparison, the £e's predicted by 
0do(T) are also presented and are seen to be within 10-20 
percent of those predicted by 0 ^ ^ ) as long as e < 0.55. 
Figure 2 also provides an extremely powerful cross check on 
the analytic and numerical results of this paper and those of 
Ref. [9]. By solving a totally different problem, Bennett and 
Kayser [9] obtained the times te for the case of e = 0. These 
are the points on the f-axis of figure 2. By extrapolating the 
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0 0.1 0.2 0.3 
/ z FIGURE 2. The times te required for a droplet to reach obtained from 

FIGURE 1. The reduced temperature Od(l~, T) (solid lines) and Odz(r) 0 « / i ~ , r) (solid lines and closed circles), &dz(T) (dashed lines and crosses) 
(dashed lines) plotted as a function ofer/2 with a = 0.057, /? = 0.186 and e plotted as a function of efor various values of X. 
= 0.10, 0.55, and 1.0 for A. equal to (a) 0.01, (b) 0.055, and (c) 0.10. The physical properties used are those of table 1 and the initial droplet radius, rd0t is 50 \un. 

The initial droplet radius, r^o, is 50 fim. The temperature Ts corresponds to Q(te) = 0.15. 
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results obtained here for nonzero € to e equal to zero, it can 
be seen that the results are in agreement and this indicates 
that this work and that of Ref. [9] are internally consistent. 

Figure 3 contains a plot of the volume fraction of the 
droplet that has evaporated away by the time t = te versus €. 
For e = 0 .1 , an evaporation rate constant fairly characteristic 
of the initial preheat stage, the volume fraction evaporated is 
less than 5 percent. If € is fairly small, this perhaps justifies 
neglecting evaporation and surface regression rate in analyz­
ing the initial droplet preheat stage. A fairly decent approxi­
mate procedure for predicting the times te and the droplet size 
at t = te is to neglect evaporation, compute the time required 
for the droplet to reach a given temperature, and then to use 
that time and a relation like eq (1) to calculate the volume 
fraction evaporated. 
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7. Appendix A 

In this appendix, we show that intermediate results such as 
those of eqs (38) and (51) reduce to the correct limits as e, the 
reduced evaporation rate constant, goes to zero. We also 
make some general remarks concerning this limiting process. 

The results of the e = 0 problem corresponding to eqs (38) 
and (51) will be denoted by a superscript ' 0 ' and are [6]: 

0.4 

X = 0.100 

/ ,X= 0.100 
/ Ax* 0055 

X= 0.055 
X= 0.010 

X= 0.010 J 

FIGURE 3. Volume fraction of a droplet that has evaporated in the time te 

plotted as a function of €for various values of X. 
The closed circles and solid lines are for the finite-gradient model (0<j(l_ , T)) and the open circles 

and dashed lines are for the zero-gradient model (0d*(T)). The physical properties used are those in 
table 1 and the initial droplet radius, rd0, is 50 fim. The times te are those of figure 2. 

* S ( T ? „ o-) = 
/3(1 + acr1'2) sinh(<r1/2Tjo> 

<")o[{j3(l + acr1'2) - 1} sinh <rll2+ a112 cosh cr1'2] 
(Al) 

for the droplet in the finite-gradient model and 

®UVo, o-) = o--1 - exp[- a o - 1 ' 2 ^ - !)]/[ i?o(o" + SfSaa112 + 3)3)] (A2) 

for the gas in the zero-gradient model. The quantities 170 and 
r 0 are defined in section 3 . We use the relations [11] 

dM(a, 6, z)/dz = aM(a + 1 , 6 + 1 , z)/b 

dU(a, b, z)/dz - aU(a + 1 , 6 + 1, z) 

(A3) 

(A4) 
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to rewrite eqs (38) and (51) as 

*d(i?, a) = 
-K«(7-l-r)L-Mrr?)H7-f-^ 

\d (a 3 €T72\| /o- 3 a 2 e\ /cr 3 e\ d (a 3 a2€T)2\ I 1 

tM(^2-'T-)|^Kr'2-'T-) -^r'2-'4-WKrT' T^)| J 
(A5) 

®gz(v, <r) = o-1 + 
(2<r+ 3ek)U(<r/e, 3 / 2 , a2eTj2/4) 

2oi3p(d/d-n)U(<r/e, 3 /2 , a W / ^ U - crtf(<r/e, 3 / 2 , a 2 e /4) ] 
(A6, 

Again from Ref. [11] we obtain 

lim [M(a, b, z/a)/T(b)] 

= z1/2-1/2»/i)_i(221/2) 

lim [ H i + a - b)U(a,b,z/a)] 
a—><x 

= 2z1/2-1/2^6_1(2z1 '2) 

(A7) 

(A8) 

where / and K are modified Bessel functions. Using these two 
limiting expressions, we find 

limM((T/€, 3/2, €if/4)/r(3/2)] 

2 sinh(cr1/27j0) 
(A9) 

vW1/2 

Km [ r ( | - ^ ) t / (o - /6 , 3 /2 , a2€7>2/4)] 

_ 2 > / n r e x p ( - «T70cr1/2) 
(A10) 

r l /2 

Multiplying the numerator and denominator of eq (A5) by 

r f 1 / r ( — J, substituting the results of eqs. (A9) and 

(A 10), replacing d/drj by d/dr)0, and rearranging the result­
ing expression yields eq (Al); that is 

lim <l>d(T7, or) = OJKTJO, cr). 
€ ^ 0 

(Al l ) 

Multiplying numerator and denominator of eq (A6) by 

17 J and then performing the same sequence of opera­

tions as for the finite-gradient model leads to eq (A2): 

The same general procedure may easily be used to show that 
other intermediate results also tend to the correct limit as € 
goes to zero. 

It is the intermediate results which may be checked and 
not the final results obtained by evaluating the Bromwich 
integrals. It is not permissible, as may be verified by trying 
it, to take the expressions O^t], r) and QgJj), T) of eqs (42) 
and (55) to the limit of e being zero to obtain 
Qd(r)o, T0) and Q%z(r)o, To)- This limiting process is im­
proper for the following reason. Inspection of eqs (Al), (A2), 
(A5) and (A6) shows the first two to be double-valued func­
tions of O" with a branch points at cr = 0 and the last two to 
be single-valued analytic functions of cr. As one proceeds to 
the limit of zero e, an infinity of simple first order poles 
coalesces into a branch point at the origin, cr = 0. The 
evaluation of the Bromwich integrals leading to O^TJ, T) and 
Qgjj), T) is thus only valid for nonzero e. The expressions 
representing 0^(i7, T) and Og^7)9 T) only do so for nonzero € 
and this explains why it is impermissible, in fact impossible, 
to obtain 0So(17o? To) and QgZ(7)o, T0) from them by any lim­
iting process. 
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