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1. Introduction

Fresnel zone plates are used in high-spatial resolution
x-ray microscopes [15,16]. The spatial resolution is de-
termined by one half the period of the outer zones, �R .
The conventional notation assumes a 1:1 mark:space
ratio. Just as for ordinary lenses, the spatial resolution l
is given by l = � /(2 NA ) where NA is the numerical
aperture, given by NA = R /f , where R is the radius of the
lens and f is the focal length. For Fresnel zone plates,
f � 2R�R /� (for R >> � R ), so for a Fresnel zone plate
l � �R . (The spatial resolution of a zone plate is usually
quoted as the Raleigh resolution, about 1.22 � R . Bar-
ring advances in phase retrieval [23], improvements in
the resolution of x-ray microscopes are dependent on
reducing the outer zone spacing.

Such zone plates with spatial resolution below 100
nm are difficult to fabricate. For a high efficiency zone
plate, it is necessary to have a significant interaction,
ideally a phase shift of � or total absorption. However,
x-radiation is famously penetrating. Hence, it is neces-
sary to have a some thickness, either to create a trans-
mission factor of order e�1 or less, or a phase shift of
order �. The required interaction length depends on the

photon energy, rising from nanometers to micrometers
as the photon energy increases from the ultraviolet
through 10 keV. This leads to a difficult requirement of
very tall, finely spaced structures. Given the advent of
highly coherent synchrotron radiation sources, improve-
ments in the spatial resolution of x-ray zone plates
would lead quickly to improvements in the resolution of
x-ray microscopes.

Modern x-ray zone plates are typically made by ex-
posing photoresist with an electron beam using technol-
ogy developed to make photomasks for integrated cir-
cuits. In this paper, I put forth an admittedly speculative
alternative: the fabrication of the 1D analog of a zone
plate by tiling with DNA. Tiling has been shown to have
the computational power of a universal Turing machine.
[12] Winfree recognized the possibility of implement-
ing computations with tiling using DNA as the tiles
[32,33]. The application and adaptation of these results
using DNA have been pursued by various groups,
achieving addition with DNA [13], and the exclusive OR
[19]. This paper explores whether it is possible and
desirable to use self-assembled DNA for the fabrication
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of focusing x-ray optics, in particular the variable
spaced grating (VSG) for one-dimensional (1D) focus-
ing.

2. Diffractive Optics

Consider the Fresnel approximation to scalar diffrac-
tion theory [11]. Light is taken to propagate principally
along the z axis. The wave function in some plane of
constant z is determined by the wave function in the
plane z = 0 according to

� (x , y , z ) =
keikz

2�iz
ei

k
2z

(x2+y2)

�dx'dy'� (x' , y' ; 0)ei
k
2z

(x'2+y'2)�i
k
z

(xx'+yy') (1)

where x , y , and z are Cartesian coordinates, and k =
2�/� is the wave vector of light whose wavelength is � .

Suppose we wish to concentrate a great deal of light
from uniform illumination in the plane z = 0 to a point
(0,0, z ). The idea of the Fresnel zone plate arises by
noting that physically eliminating out-of-phase light in
the plane z = 0 while passing in-phase light will lead to
a large value for the intensity |� (0,0, z )|2, i.e.,

� (0, 0; z ) =
keikz

2�iz��

d x'dy'�0ei
k
2z

(x'2+y'2) (2)

where � is a domain of integration which corresponds to
the transmissive areas of a plane with apertures and �0

is the phase of the plane wave in the z = 0 plane. In
Kirchoff’s diffraction theory, an aperture in the z = 0
plane is modeled simply by restricting the range of
integration in the z = 0 plate to the transparent region.
Defining the aperture by the condition �ZP =
{(x ,y )|cos k

2z (x
2 + y 2) + �0 > 0}, where �0 is a phase,

leads to a domain �ZP consisting of set of concentric
annuli, each of diminishing radius for the zones, as
shown in Fig. 1. An amplitude Fresnel zone plate mod-
els this domain. The blocking material need only
achieve a given thickness, sufficient to block the light;
this thickness is independent of the radius. Ordinary
lenses focus by achieving a constant optical path length
between the image and object plane. As the physical
path length may differ considerably for different rays
going through a lens, this results in thick lenses. In the
Fresnel lens, the optical path length differs by 2� from
zone to zone. Whereas an ordinary lens must become
thicker as it gets larger to accumulate a phase shift of
many times 2�, a Fresnel lens has a maximum thick-
ness. Because x rays are always absorbed in materials,

Fig. 1. Sketch of an amplitude Fresnel zone plate.

the property of a maximum thickness for the zone plate
is crucial for x-ray optics. Grazing incidence optics
avoids the absorption problem; however, in practice the
spatial resolution is limited to about 1 �m [9], vs 20 nm
for Fresnel zone plates under favorable circumstances
[27].

Although the discussion here concerns focus to a
point, a similar argument shows that a line focus may be
obtained with an amplitude zone plate defined by
�VSG = {(x , y )|cos k

2z x 2 > 0} where VSG stands for vari-
able spaced grating. This domain consists of a set of
variable spaced stripes, as illustrated in Fig. 2. Although
Fresnel zone plates command most of the attention in
x-ray optics, the 1D variable spaced grating has been
recently implemented in silicon using anisotropic etch-
ing [7,8].

3. Algorithm for Self-Assembled
Diffraction Gratings

3.1 Analysis of Fresnel Integral

Consider the purely mathematical problem of obtain-
ing a variable spaced grating from self-assembled tiles.
A 2D focus may be achieved by two orthogonal 1D
gratings [7]; the widely-used Kirkpatrick-Baez pair im-
plements 2D focusing with two 1D focusing elements in
grazing incidence optics [14]. Such a scheme has re-
cently been proposed for diffractive optics as well where
anisotropic etching of silicon permits deep, parallel
canyon-like structures [7].
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Fig. 2. Sketch of a variable spaced grating, the 1D analog of a Fresnel
zone plate.

In the 1D case, the aperture may be assumed to con-
sist of a set of stripes parallel to the x axis. Further, the
stripes may be pixellated, i.e., the stripes have widths
which are are integer multiples of some distance � . I
wish to consider using self-assembled tiles, which could
be implemented with DNA, to create a variable space
diffraction grating along the y axis. The grating itself
will be created by extending the pattern orthogonally
parallel to the x axis with simple repetition. The con-
struction will be of a pixellated version of a variable
spaced grating: each pixel will be transparent or opaque
to maximize intensity at the focus but, in contrast to the
continuous case, all zones will be integer multiples of
some minimum size. Such a constraint is necessary for
the construction to be a tiling. Mathematically, we wish
to construct a set S (� , 	 , �0) of positive integers n such
that In (� , 	 , �0) > 0 where

In =
1
��

(n+
1
2

)�

(n�
1
2

)�

dy cos(	 y 2 + �0) (3)

where 	 = k
2z = �

�z . While this integral has an analytic
form in terms of the Fresnel integrals, a simple approx-
imation is more useful in this context.

In � cos(n 2	� 2 + �1) (4)

is sufficient to ensure the correct sign as long as
(n + 1

8)	� 2 
 �, which is a very weak restriction from a
practical point of view: the ideal zone spacing must not
be smaller than � . Here, �1 = �0 + 1

8 	� 2.

Using the result of Eq. (4), for n not too large, it is
sufficient to construct the set

S = {n |(n 2	� 2 + �2) mod 2� < �} (5)

where �2 = �1 + �
2. Let M = 2�

	� 2 be an integer. (For a
given � and � this condition may be achieved by a suit-
able choice of z .) Then,

S = {n |(n 2 + p ) mod M <
M
2

}, (6)

where p = �2/(	� 2). (One may choose p freely because
it depends linearly on �0 which may be chosen freely.)

3.2 Tiling Construction for Variable Spaced
Grating

Consider a 2 � N array of tiles named An and Bn ,
n = 0,..., N�1. The tile edges will be denoted by �, �,
�, and � for north, east, west, and south, respectively.
Under the rules of the tiling the � of An+1 and Bn+1 must
be the same as the � edge of An and Bn , respectively.
Furthermore, the � edge of An must be the same as the
� edge of Bn . The tiles Bn are given by

(2n + 1) mod M

(2n � 1) mod M Bn 2

(2n � 1) mod M

and the tiles An are given by

n 2 mod M

(n 2 + p ) mod M < M /2 An (2n � 1) mod M

(n � 1)2 mod M

(7)

for n � 1. The � edge of each tile is the sum (mod M )
of the � and � edges. The tiles A0 and B0 are starting
tiles and are slightly modified. Their � edge is left blank
(it is not involved in the tiling) and a special symbol s
links these two uniquely as seen in Fig. 3. The starting
conditions also assume a long straight border of tiles
labeled 2 on their � side.
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Fig. 3. Example of tiling for a variable space grating for M = 8 and
p = 0. A0 and B0 are starting tiles. A column of 2’s to form a vertical
frame is also assumed. The ellipses indicate tiles which are repeated
indefinitely to form stripes. The symbols T , F , �, s , and the numbers
are distinct symbols.

The meaning of (n 2 + p ) mod M < M /2 is that it is T
if true and F if false. The tiling of the Bn is uniquely
determined because the presence of the label 2 leads, for
M even, to only B tiles being placed against the column
of 2’s and nowhere else; moreover, there is only one tile
with a given � edge, so the � edge of B0 determines the
tiling of all the Bn . The tiling of the An+1 is also uniquely
determined: the � side of An and the � side of Bn+1 are
sufficient to identify a unique tile. Note that there are not
more than M distinct B tiles and M 2 distinct A tiles. To
construct the grating, these tiles must be augmented by
the tiles T and F labeled by

� �

T T and F F (8)

� �

respectively, where � is a new symbol.

The tiles T and F propagate stripes whose type is
determined from the label on the � side of each An . The
An with a T label define the n in the set S of Eq. (6).
These tiles construct a variable space grating within a
quarter plane. An example is given in Fig. 3. No attempt
is made to confine the construction to a finite size, but
this could be done externally (e.g., by providing a finite
area for the growth of the pattern). Achieving a practical
diffraction efficiency in the case of an x-ray grating (at
least 1 %) will require the tiling to be extended upward
along the z axis as discussed below. For the case of atom
diffraction, a stencil with clear apertures is required.
Such a diffraction grating may be implemented by gen-
eralizing the tile T to T1, ..., Tq , not propagating F , and
adding a bridge tile f , as shown in Fig. 4.

Fig. 4. Example of implementation of stripes for a grating as a stencil
for the case q = 4. The bridging tiles are for mechanical strength. The
grating contains voids.

The construction of the tiles An , Bn , T , and F is not
addressed explicitly in this paper. However, key require-
ments have been demonstrated previously, specifically
binary addition [13] and signal threads [26].

The number of distinct tiles may be reduced by noting
that Bn may be implemented by having it add 2 to its �
side mod M to get its � side. If M is a power of 2, this
is particularly simple to implement. Transferring the �
side to the � side is a relatively routine use of signal
threads [26]. Similarly, An may be implemented by
adding its � side to its � side mod M . The logical
comparison required for the � side of An simply re-
quires reading the most significant bit of the � side, if
p = 0 or p = M /2 and M is a power of 2. Hence, the
number of distinct tiles required is comparable to that
needed to implement addition modulo a power of 2 [13].

Multi-level diffraction gratings [10] may be achieved
within this scheme as well. The tiles An would have their
� side labeled by (n 2 + p ) mod M , and the pair of tiles
T and F would become a set of M tiles each with the
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appropriate height. The efficiency of multi-level diffrac-
tion gratings can be much higher than two-level ones.

In principle, the spatial resolution of the grating can
be determined by the 2 nm diameter of DNA, even if it
takes several steps to perform the computation of the An

and Bn . The branched tiles (T or F ) need not be orthog-
onal to direction �. The smaller the angle from � the
smaller the pitch.

It is not immediately obvious how to turn this con-
struction into a Fresnel zone plate, although if high
efficiency can be achieved, two 1D variable spaced grat-
ings can be effective for 2D focusing [7]. However, all
zones of a Fresnel zone plate have equal area. Hence,
one could imagine constructing a binary amplitude
Fresnel zone plate by having M tiles which combine in
a cyclic topology in 1D (i.e., counting from 0 to M�1)
but which are arranged in a spiral in 2D. Assuming the
DNA could bend over a range of angles and would bond
covalently without guidance from sticky ends (exposed
bases) such a construction could be attempted. It is
sufficient to construct an annulus of the zone plate, as
the central region is usually blocked in practice.

4. DNA as a Material For X-Ray and
Atom Optics

The x-ray properties of any material depend princi-
pally on the chemical composition and density. The
stoichiometry of standard DNA is given in Table 1. The
variation due to the composition of the base pairs is
negligible. Also neglected here is the difference in com-
position between standard DNA and cross-linked DNA.
The density of DNA may be estimated from the proper-
ties of an isolated double helix. The diameter is 2 nm;

Table 1. DNA stoichiometry [18] sums over adenine (A) and
thymine (T) as well as cytosine (C) and guanine (G) are given because
these molecules are paired. The values are given for the constituent
molecules bound in DNA. The total figure is for one of each base, four
deoxyribose molecules and four phosphate bonds. Because the AT
and CG pairs are so similar the x-ray absorption properties will
depend negligibly on the detailed composition, as shown in the lines
“All AT” and “All CG”.

H C N O P

Adenine + Thymine 9 10 7 2 0
Cytosine + Guanine 10 9 8 2 0
Deoxyribose 7 5 0 1 0
Phosphate bond 1 0 0 4 1

Total 51 39 15 24 4
All AT 50 40 14 24 4
All CG 52 38 16 24 4

a base pair has a length of 0.34 nm [18]. Assuming
DNA is packed in a simple square lattice in two dimen-
sions, a base pair has a volume of 1.3 nm3. The molec-
ular weight of one pair, one-half of H51C39N15O24P4, is
618.902 amu [5] or 1.03 � 10�21 g. Hence, the density
in this estimate is 0.8 g/cm3. In practice, this is likely to
be an upper bound, as DNA need not pack densely.

Using the density and composition parameters, it is
possible to get a quick estimate of the diffraction effi-
ciency of a transmission grating, as shown in Fig. 5. To
achieve a reasonable efficiency, many hundreds of lay-
ers of DNA molecules will be required. The efficiency
could be improved markedly through a multi-level
structure in which the height is varied to achieve an
approximate quadratic phase factor.

Radiation damage is an issue for these structures.
With soft x rays, samples may be imaged tomographi-
cally with some damage for dosages of 24 MGy
[16,31], which is equivalent to 150 eV of absorbed
radiation per base pair. Such damage could limit the
useful lifetime of a DNA diffraction grating to perhaps
an hour. The estimate may be unduly pessimistic: the
cross-linked nature of the DNA may increase the radia-
tion resistance. The application of ligase to increase the
covalent bonding (and introduce relatively heavy P
atoms) is helpful in this context [34]. The use of cryo-
genics has been shown to improve the threshold for
morphological damage while the specimen is frozen to
10 GGy [21,30]. Moreover, even if the structures were
susceptible to radiation damage, it is possible they
could be used as masks (used several times) to expose
substrates with very fine patterns.

Recently, atom optics have been used to explore the
possibility of lithography with resolutions in the few nm
regime [2]. The observation of Bose-Einstein condensa-
tion in atomic traps [6] has also led to increased recent
interest in atom optics, e.g., to study the momentum
distribution and coherence of the condensates [17,28].
Although most manipulation of atoms is based on elec-
tromagnetic (including optical) interactions [22], mi-
crofabricated atom optics have been developed as well
[3]. In particular, Fresnel zone plate stencils with an
outer zone spacing of 50 nm, suitable for the diffraction
of atoms, have been reported recently [25], representing
an improvement on outer zone spacings of 415 nm [4]
and 230 nm [29] achieved a decade ago. The advantages
of material optics over their electromagnetic counter-
parts are ease of use and independence of the atomic
species diffracted by the optic [4].

A variable spaced transmission grating made out of a
single layer of DNA could serve as a diffraction grating
for cold atoms, such as those found in a Bose-Einstein
condensate [6]. The thermal de Broglie wavelength of a
particle at temperature T is given by
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Fig. 5. Efficiency of diffraction grating composed of 1, 10, 100, and 1000 layers of DNA double
helices at 2 nm per layer. A density of 0.8 g/cm3, chemical composition of H51C39N15O24P4, and
mark-to-space ratio of 1:1 are assumed. Calculation performed using Ref. [1].

� =
2�
c

(2Mc 2kT )1/2 (9)

where M is the mass of the particle, k is Boltzman’s
constant, and T is the temperature. For the case of Rb
atoms at 100 nK, � = 1.1 �m. This length may be com-
pared to the 2 �m � 8 �m size achieved for self-assem-
bled DNA films [33]. Moreover, self-assembled DNA
with holes of controlled size of 10 nm to 20 nm have
been realized, [20] a key feature of the technology con-
sidered here. Free standing carbon films 3 nm to 4 nm
thick and 75 �m square containing large holes are a
low-cost commercial product1 [24] suggesting that the
requirement for a free standing film will not be too
onerous.

To assemble a diffraction grating, a high degree of
accuracy in placement is required. Improving the rigid-
ity of DNA for use in molecular electronics is a current
research topic [34].

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

5. Conclusions

An algorithm for constructing 1D diffractive optics
using tiling has been presented. The algorithm may find
practical application using tiles constructed from artifi-
cial DNA. In principle, ultra-fine resolution diffractive
optics may be created with this method. A single layer
would suffice to focus coherent condensed atoms to a
line. A multiple layered structure could find application
either as an x-ray photomask or directly, although radia-
tion damage is a key issue.
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