
1. Introduction

Vector network analyzers (VNAs) are one of the
most versatile instruments available for RF and
microwave measurements. They are used to measure
complex scattering parameters (S-parameters) of linear
devices or circuits. RF engineers use them to verify
their designs, confirm proper performance, and diag-
nose failures. A VNA works by exciting a linear device
under test (DUT) with a series of sine wave signals, one

frequency at a time, and detecting the response of the
DUT at its signal ports. Since the DUT is linear, the
input and output signal frequencies are the same as the
source; these signals can be described by complex
numbers that account for the signals’ amplitudes and
phases. The input-output relationships are described by
ratios of complex numbers, known as S-parameters. For
a two-port network, four S-parameters completely
describe the behavior of a linear DUT when excited by
a sine wave at a particular frequency. Although the
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measurement of S-parameters by VNAs is invaluable to
the microwave designer for modeling and measuring
linear circuits, these measurements are oftentimes inad-
equate for nonlinear circuits operating at large-signal
conditions, since nonlinearities transfer energy from
the stimulus frequency to products at new frequencies.
Thus, conventional linear network analysis, which
relies on the assumption of superposition, must be
replaced by a more general type of analysis, which we
refer to as nonlinear network analysis.

Nonlinear network analysis involves characterizing a
nonlinear device under realistic, large-signal operating
conditions. To do this, complex traveling waves (rather
than ratios) are measured at the ports of a DUT not only
at the stimulus frequency (or frequencies), but also at
other frequencies where energy may be created.
Assuming the input signals are sine-waves and the
DUT exhibits neither sub-harmonic nor chaotic behav-
ior, the input and output signals will be combinations of
sine-wave signals, caused by the nonlinearity of the
DUT in conjunction with impedance mismatches
between the measuring system and the DUT. If a single
excitation frequency is present, new frequency compo-
nents will appear at harmonics of the excitation fre-
quency, and if multiple excitation frequencies are pres-
ent, new frequency components will appear at the inter-
modulation products as well as at harmonics of each of
the excitation frequencies. In practice, there will be a
limited number of significant harmonics and intermod-
ulation products. The set of frequencies at which ener-
gy is present and must be measured is known as the fre-
quency grid.

A class of instruments known as nonlinear vector
network analyzers (NVNA) are capable of providing
accurate waveform vectors by acquiring and correcting
the magnitude and phase relationships between the fun-
damental and harmonic components in the periodic sig-
nals [1-5]. An NVNA excites a nonlinear DUT with one
or more sine wave signals and detects the response of
the DUT at its signal ports. Assuming the DUT does not
exhibit any sub-harmonic or chaotic behavior, the input
and output signals will be combinations of sine wave
signals due to the nonlinearity of the DUT in conjunc-
tion with mismatches between the system and the DUT.
With these facts in mind, the major difference between
a linear VNA and an NVNA is that a VNA measures
ratios between input and output waves one frequency at
a time while an NVNA measures the actual input and
output waves simultaneously over a broad band of fre-
quencies.

Even though S-parameters cannot adequately repre-
sent nonlinear circuits, some type of parameters relat-

ing incident and reflected signals are beneficial so that
the designers can “see” application-specific engineer-
ing figures of merit that are similar to what they are
accustomed to. In first part of this paper, we propose
definitions of such ratios that we refer to as nonlinear
large-signal scattering (S) parameters. We also intro-
duce nonlinear large-signal impedance (Z) and admit-
tance (Y) parameters, and present equations relating
the different representations. Next, we make two sim-
plifications when considering the cases of a one-port
network with a single-tone excitation and a two-port
network with a single-tone excitation.

For existing nonlinear models, we can readily gener-
ate nonlinear large-signal S-parameters by performing
a harmonic balance simulation. For devices, with no
model available, we can extract these parameters from
artificial neural network (ANN) models that are trained
with multiple frequency-domain measurements made
on a nonlinear DUT with an NVNA. To illustrate appli-
cations and generation of nonlinear large-signal S-
parameters, we present two examples. First, we illus-
trate how nonlinear large-signal S-parameters can be
used as a tool in the process of designing a simple non-
linear circuit, specifically a single-diode 1 GHz fre-
quency-doubler circuit. And secondly, we describe a
method for generating nonlinear large-signal S-param-
eters based upon ANN models trained on frequency-
domain data measured using an NVNA. We compare a
diode circuit model, generated using this method, to a
harmonic balance simulation of a commercial device
model.

Finally, we compare our nonlinear large-signal S-
parameters to another form of nonlinear mapping,
known as nonlinear scattering functions [6-7].
Specifically, we show that the two formulations are not
equivalent. Nonlinear large-signal S-parameters are
more general than the nonlinear scattering functions,
which are useful in approximating a specific class of
nonlinearity in a more compact form.

2. Nonlinear Large-Signal Scattering
Parameters

In this section, we introduce the concept of nonlinear
large-signal scattering parameters. Like commonly
used linear S-parameters, nonlinear large-signal scatter-
ing (S) parameters can also be expressed as ratios of
incident and reflected wave variables. However, unlike
linear S-parameters, nonlinear large-signal S-parame-
ters depend upon the signal magnitude and must
account for the harmonic content of the input and out-
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put signals since energy can be transferred to other fre-
quencies in a nonlinear device.

After presenting the general form of nonlinear large-
signal S-parameters, we also introduce nonlinear
large-signal impedance (Z) and admittance (Y) param-
eters, and present equations for relating the different
representations. Next, we make two simplifications in
which we consider the cases of a one-port network with
a single-tone excitation and a two-port network with a
single-tone excitation.

2.1 General Form

Consider an N-port network. Normalized wave vari-
ables ajl and bjl at the jth port and lth harmonic are pro-
portional to the incoming and outgoing waves, respec-
tively, and may be defined in terms of the voltages
associated with these waves as follows:

(1)

where V +
jl and V –

jl represent voltages associated with
the incoming and outgoing waves in the transmission
lines connected to the jth port and containing frequen-
cies of the lth harmonic; Zoj represents the characteris-
tic impedance of the line at the jth port.

The nonlinear large-signal scattering matrix S of the
network expresses the relationship between a’s and b’s
at various ports and harmonics through the matrix
equation 

(2)

where b and a are (N × M)-element column vectors.
Here N refers to the number of ports and M refers to the
number of harmonics being considered. Matrix S is an
(N × M)2-element square matrix. We assume all a’s and
b’s are phase referenced to a11 to enforce time invari-
ance [8].

As an example, consider a two-port network with 3
harmonics; Eq. (2) then becomes

(3)

where

(4)

For each nonlinear large-signal scattering parameter
Sijkl the index i refers to the port number of the b wave,
the index j refers to the port number of the a wave, k is
the harmonic index of the b wave, and l is the harmon-
ic index of the a wave. The vectors are
(M=3)-element vectors given by

(5)

Equation (3) can be expanded as follows

(6)

Note that in each of the four sub-matrices, the diagonal
elements contain the same-frequency scattering param-
eters, the upper right elements contain the frequency
down-conversion scattering parameters, and the lower
left elements contain the frequency up-conversion scat-
tering parameters. If the device under consideration
contains no nonlinearities (i.e., no power is transferred
to other frequencies), then Eq. (6) reduces to

(7)

which is the matrix representation for the well-known
linear S-parameters involving three excitation frequen-
cies.

2.2 Nonlinear Large-Signal Impedance
Parameters

Rather than expressing the relationship between a’s
and b’s in terms of a nonlinear large-signal scattering
matrix S, we can alternatively express the relationship
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between voltages (V’s) and currents (I’s) in terms of a
nonlinear large-signal impedance matrix ZZ, as follows

V = ZZ I, (8)

where V and I are (N×M)-element column vectors.
Once again N refers to the number of ports and M refers
to the number of harmonics being considered. ZZ is an
(N×M)2-element square matrix.

For a two-port network with 3 harmonics, Eq. (8)
becomes

(9)

where

(10)

For each nonlinear large-signal impedance parameter
Zijkl, the index i refers to the port number of the voltage
V, the index j refers to the port number of the current I,
k is the harmonic index of V, and l is the harmonic
index of I. The vectors are (M=3)-element
vectors given by

(11)

Equation (9) can be expanded to

(12)

2.3 Relating S and ZZ Matrices

The S and ZZ matrices can be expressed in terms of
one another, if we know how a and b relate to V and I.
From Eq. (1), we can express Vik in terms of ajl and bik

as follows:

(13)

where the subscripts refer to the ith port and the kth har-
monic. We can similarly express Ijl as

(14)

where the subscripts refer to the jth port and at the lth
harmonic.

For simplicity, we will assume for now that the net-
work under consideration consists of two ports. Later,
we can easily generalize the equations relating the S
and ZZ matrices for any N-port network. If we allow the
two transmission lines or waveguides connecting the
two ports to have different characteristic impedances,
Zo1 and Zo2, Eq. (14) can be expressed in matrix form as

(15)

where [U] is the identity matrix. Equation (9) can be
expressed as

(16)

Combining Eqs. (15) and (16) gives

(17)

or

(18)

where

(19)
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is the normalized impedance matrix. Equation (18) can
be rewritten as

(20)

and Eq.(3) can be rewritten as

(21)

Combining Eqs. (20) and (21) allows us to solve for S
in terms of ZZ:

(22)

If Zo1 = Zo2, Eq. (22) reduces to

(23)

Alternatively, we can combine Eqs. (20) and (21) to
solve for ZZ in terms of S:

(24)

If Zo1 = Zo2, Eq. (24) reduces to

(25)

2.4 Nonlinear Large-Signal Admittance
Parameters

We can also express the relationship between volt-
ages (V’s) and currents (I’s) in terms of a nonlinear
large-signal admittance matrix Y, as follows

I = Y V, (26)

where Y is an (N×M)2-element square matrix. For a
two-port network with three harmonics, for example,
Eq. (26) becomes

(27)

where

(28)

For each nonlinear large-signal admittance parameter
Yijkl, the index i refers to the port number of the current
I, the index j refers to the port number of the voltage V,
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k is the harmonic index of I, and l is the harmonic index
of V. The vectors are, once again, (M=3)-ele-
ment vectors, defined in Eq. (11). Equation (27) can be
expanded as follows

(29)

2.5 Relating S and Y Matrices

The S and Y matrices can also be expressed in
terms of one another, using Eqs. (13) and (14) which
show how a and b relate to V and I.

For simplicity, we will again assume the network
under consideration consists of two ports. If we allow
the two transmission lines or waveguides connecting
the two ports to have different characteristic imped-
ances Zo1 and Zo2, Eq. (14) can be expressed in matrix
form as

(30)

where [U] is the identity matrix. Equation (27) can be
expressed as

(31)

Combining Eqs. (30) and (31) gives

(32)

or

(33)

where

(34)

is the normalized admittance matrix. Equation (33) can
be rewritten as

(35)

and Eq.(3) can be rewritten as

(36)

Combining Eqs. (35) and (36) allows us to solve for S
in terms of Y :

(37)

If Zo1 = Zo2, Eq. (37) reduces to:

(38)

Alternatively, we can combine Eqs. (35) and (36) to
solve for Y in terms of S:

Volume 109, Number 4, July-August 2004
Journal of Research of the National Institute of Standards and Technology

412

 and j iV I

1111 1112 1113 1211 1212 121311

1121 1122 1123 1221 1222 122312

1131 1132 1133 1231 1232 123313

2111 2112 2113 2211 2212 221321

2121 2122 2123 2221 2222 222322

2131 213223

I
I
I
I
I
I

 
 
 
 

= 
 
 
 
  

Y Y Y Y Y Y
Y Y Y Y Y Y
Y Y Y Y Y Y
Y Y Y Y Y Y
Y Y Y Y Y Y
Y Y Y

11

12

13

21

22

2133 2231 2232 2233 23

.

V
V
V
V
V
V

  
  
  
  
  
  
  
  

    Y Y Y

11 1 1

22 2 2

[ ] / [0]
,

[0] [ ] /
o

o

U ZI V V
U ZI V V

+ −

+ −

       
= −               

11 121 1 1

21 222 2 2

[ ] [ ]
.

[ ] [ ]
I V V
I V V

+ −

+ −

       
= +                 

Y Y
Y Y

1 1

2 2

1
11 121 1 1

21 222 2 2

[ ] [ ][ ] / [0]
[ ] [ ][0] [ ] /

o

o

V V
V V

U Z V V
U Z V V

+ −

+ −

− + −

+ −

   
− =   

   
       

+                

Y Y
Y Y

11 121 1 1 1

21 222 2 2 2

[ ] [ ]
,

[ ] [ ]
V V V V
V V V V

+ − + −

+ − + −

′ ′          
− = +          ′ ′          

Y Y
Y Y

1
11 12 11 121

21 22 21 222

[ ] [ ] [ ] [ ][ ] / [0]
[ ] [ ] [ ] [ ][0] [ ] /

o

o

U Z
U Z

−′ ′    
=    ′ ′     

Y Y Y Y
Y Y Y Y

11 12 1

21 22 2

11 12 1

21 22 2

[ ] [ ][ ] [0]
[ ] [ ][0] [ ]

[ ] [ ][ ] [0]
[ ] [ ][0] [ ]

U V
U V

U V
U V

−

−

+

+

′ ′     
+ =      ′ ′     

′ ′     
−      ′ ′     

Y Y
Y Y

Y Y
Y Y

1 1

21

111 12 1

21 22 21

[ ] / [0]

[0] [ ] /

[ ] / [0][ ] [ ]
.

[ ] [ ] [0] [ ] /

o

o

o

o

U Z V
VU Z

U Z V
VU Z

−

−

+

+

   
=   

    
    
    
     

S S
S S

11 12

21 22

1

11 121

21 222

11 12 1

21 22 2

[ ] [ ]
[ ] [ ]

[ ] [ ][ ] / [0] [ ] [0]
[ ] [ ][0] [ ][0] [ ] /

[ ] [ ] [ ] / [0][ ] [0]
[ ] [ ][0] [ ] [0] [ ] /

o

o

o

o

U Z U
UU Z

U ZU
U U Z

−

−

 
= 

 
  ′ ′   

+     ′ ′       

 ′ ′   
−      ′ ′       

S S
S S

Y Y
Y Y

Y Y
Y Y

1

.

1
11 1211 12

21 2221 22

11 12

21 22

[ ] [ ][ ] [ ] [ ] [0]
[ ] [ ][ ] [ ] [0] [ ]

[ ] [ ][ ] [0]
.

[ ] [ ][0] [ ]

U
U

U
U

−′ ′     
= +      ′ ′     

′ ′    −    ′ ′    

Y YS S
Y YS S

Y Y
Y Y



(39)

If Zo1 = Zo2, Eq. (39) reduces to

(40)

2.6 One-Port Network With Single-Tone
Excitation

For a one-port network with a single-tone excitation
at the fundamental frequency, we can extract a reflec-
tion coefficient given by

(41)

The limitation imposed on the equation is that all other
incident waves other than a11 equal zero. Instead of sim-
ply taking the ratio of b1k to a11, we reference the phase
of b1k to that of a11. To do this, we must subtract k times
the phase of a11 from b1k [8].

For a one-port network with a single-tone excitation
at the fundamental frequency, we can show that the
equation relating S and ZZ reduces to the same well-
known equation for the linear case if we assume that no
energy is redistributed into the form of frequency
down-conversion. To illustrate this, we will consider
only M=3 harmonics, for the sake of simplicity.
Equation (6) reduces to

(42)

for a one-port network with a single-tone excitation a11.
This matrix can be rewritten as a set of three equations:

(43)

Likewise, Eq. (12) reduces to

(44)

where the voltage V11 at the first harmonic can be
expressed as

(45)

From Eqs. (13) and (14), we know that

(46)

Combining Eqs. (45) and (46) gives

(47)

Substituting Eq. (43) into Eq. (47) and solving for
Z1111 gives

(48)

If no energy is redistributed into the form of frequency
down-conversion (i.e., Z1112 = Z1113 = 0), then Eq. (48)
reduces to the same equation as in the linear case:
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(49)

A similar derivation can be performed to show that

(50)

Once again, if no energy is transferred to frequency
down-conversion (i.e., Y1112 = Y1113 = 0), then Eq. (50)
reduces to the same equation as in the linear case:

(51)

2.7 Two-Port Network With Single-Tone
Excitation

For a two-port network excited at port 1 by a single-
tone excitation at the fundamental frequency, we can
extract an input reflection coefficient given by

(52)

As with Eq. (41), instead of simply taking the ratio of
b1k to a11, we phase reference to a11. To do this we must
subtract k times the phase of a11 from b1k. The limitation
once again imposed on the equation is that all other
incident waves other than a11 equal zero.

Another valuable parameter, the forward transmis-
sion coefficient, is similarly extracted as follows

(53)

This parameter provides a value of the gain or loss
through a device either at the fundamental frequency or
converted to a higher harmonic frequency.

In addition to the previous two parameters, given in
Eqs. (52) and (53), an output reflection coefficient can
also be useful when trying to determine the output
matching network. If a nonlinear DUT is operating
under its normal drive condition (a11 at some constant
signal level), and a second source, excited by a small-
signal tone at frequency fk, is placed at port 2 of the

DUT, one of the equations in the matrix defined by Eq.
(6) reduces to

(54)

If we solve Eq. (54) for S22kk, we obtain

(55)

In Eq. (55), the output reflection coefficient S22kk obvi-
ously cannot be determined by simply taking the ratio
of b2k to a2k, since the ratio also depends on a11 through
S21k1. When a2k is small, we can generate another signal
∆a2k that is offset slightly from the frequency of interest
fk by ∆fk. Eq. (54) then becomes

(56)

where ∆a2k << a2k and S22kk remains constant over this
frequency range. Subtracting Eq. (54) from Eq. (56)
gives

(57)

which does not depend on S21k1. If we solve Eq. (57)
for S22kk, we obtain

(58)

Equation (58) is a quasi-linear approximation of the
output reflection coefficient under normal operating
conditions, and is consistent with the definition of “Hot
S22,” which has been used to measure the degree of mis-
match at the output port of a power amplifier at its exci-
tation frequency.

2.8 Summary of Sec. 2

In this section, we presented the general form of non-
linear large-signal S-parameters. Unlike linear S-
parameters, nonlinear large-signal S-parameters
depend upon the signal magnitude and must take into
account the harmonic content of the input and output
signals, since energy can be transferred to other fre-
quencies in a nonlinear device. We also introduced non-
linear large-signal impedance (Z) and admittance (Y)
parameters, and presented equations for relating the
different representations. Next, we made two simplifi-
cations, considering the cases of a one-port network
with a single-tone excitation and a two-port network
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with a single-tone excitation. For the one-port case with
a single-tone excitation at the fundamental frequency,
we showed that the equation relating S and Z reduces
to the same well-known equation for the linear case if
we assume that no energy is transferred to frequency
down-conversion. For the two-port case excited at port
1 by a single-tone excitation at the fundamental fre-
quency, we extracted an input reflection coefficient
S11k1, a forward transmission coefficient S21k1, and a
quasi-linear output reflection coefficient S22kk.

3. Using Nonlinear Large-Signal S-
Parameters to Design a Diode
Frequency-Doubler Circuit With a
Harmonic-Balance Simulator

Resistive frequency doublers operate on the princi-
ple that a sinusoidal waveform is distorted by the non-
linear I/V characteristic of a Schottky-barrier diode [9].
This distortion causes power to be generated at higher-
harmonic frequencies. The design of such doublers
involves separating the input and output signals by fil-
ters and determining the optimum input and output
matching circuits, as illustrated in Fig. 1.

Although single-diode resistive doublers are not very
efficient (analysis predicts a conversion loss of at least
9 dB [10]), we chose this circuit because it is simple
enough to clearly illustrate how nonlinear large-signal
S-parameters can be used as a design tool.

In the following sections, we describe the various
steps involved in designing a single-diode 1 GHz fre-
quency-doubler circuit. Since we are using a simulator,
we can force the stimulus to consist of only |a11|, with
all other amn terms equal to zero, where m and n are pos-
itive integers such that m ≠ 1 and n ≠ 1. (In practice,
this condition can never be completely realized in a
measurement environment.) With only an a11 compo-
nent present, we need only consider the parameters
S11k1 (Eq. 52), which is a measure of the large-signal
input match at the kth harmonic, as well as the param-

eter S21k1 (Eq. 53), a measure of the large-signal con-
version loss or gain at the kth harmonic, plus the quasi-
linear S2222 (Eq. 58) to determine the output matching
network at the second harmonic. Figure 2 illustrates the
setups required for determining these parameters.
Determining S2222 requires a second source at port 2 at
a frequency slightly offset from ω2.

In the first step, we perform a simulation on the
diode alone and use S2121 to determine the optimum
bias condition for converting power from the funda-
mental frequency to the second harmonic. Second, we
add filtering networks to separate the input and output
signals, and verify their proper performance by looking
at S2111 and S1121. Third, we make use of S1111 to deter-
mine the input matching network. Fourth, with the
input matching network in place, we place a second
source at port 2 and find the quasi-linear value of S2222,
which allows us to determine the output matching net-
work. Fifth, we use the optimization feature of the sim-
ulator to minimize S1111 by varying the line lengths of
the input and output matching circuits. And finally,
sixth, we add 4 GHz and 6 GHz filters at the output
(and re-determine the proper input and output matching
circuits) in order to reduce the values of S2141 and S2161,
which in turn increases the value of S2121 and cleans up
the output waveform.

3.1 Diode Only

In this example, we use a compact model to simulate
a commercial Schottky-barrier diode. The model
includes a series resistance Rs of 14 Ω, a junction
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Fig. 1. Block diagram of a single-diode resistive doubler.

Fig 2. Nonlinear large-signal S-parameters used to characterize a
two-port device excited by a single-tone signal at port 1.



capacitance at zero voltage Cj0 of 0.08 pF, and a reverse
saturation current Is of 3 × 10–10 A.

First, we perform a harmonic-balance simulation on
the diode, sweeping the bias voltage to determine
which condition gives the highest value of S2121 for
a11 = 1.0 V. Note that in all simulations we set the gen-
erator impedance ZG and the load impedance ZL to
50 Ω. After sweeping the voltage, we determine that the
optimum forward bias is +0.48 V.

3.2 Diode With 1 GHz and 2 GHz Filters

With a stimulus of a11 = 1.0 V and a forward bias of
+0.48 V, we add filtering networks to separate the input
and output signals. On the input side, we place a 2 GHz,
λ/4 (λ/8 at 1 GHz) open-circuited stub. This creates an
RF short at 2 GHz, preventing the output power gener-
ated in the diode from traveling backward. On the out-
put side, we place a 1 GHz, λ/4 open-circuited stub.
This creates an RF short at 1 GHz, preventing any sig-
nal at 1 GHz from traveling forward.

Table 1 lists the simulated values for S1111 – S1161,
S2111 – S2161, G2 and G2/G for each of the design
stages, where G is the expanded power gain and G2 is
the expanded power gain confined to the second har-
monic, as defined in [11]. With the 1 GHz and 2 GHz
filters in place, we see that the value of |S1121| decreas-
es from 0.170 to 1.3 × 10–5, the value of |S2111| decreas-
es from 0.536 to 3.3 × 10–5, and G2 increases from
–14.16 dB to –9.73 dB.

3.3 Diode With 1 GHz and 2 GHz Filters and
Input Matching

Once the filters are placed in the circuit, we make use
of the complex-valued S1111 to design the input match-
ing network with the well-known single, open-circuited
stub technique. This is possible, assuming that no ener-
gy is transferred to frequency down-conversion, as dis-
cussed in Sec. 2.6. We see in Table 1 that |S1111| reduces
from 0.569 without the input matching network to
9.4 × 10–2 with the input matching network in place.
Likewise, G2 increases from –9.73 dB to –9.69 dB.

3.4 Diode With 1 GHz and 2 GHz Filters, Plus
Input and Output Matching

Whereas our input matching network is designed for
1 GHz, our output matching network must be designed
for 2 GHz. While the circuit is operating under its nor-
mal drive condition (a11 = 1.0 V and a forward bias of
+0.48 V) we place a second source at port 2, excited by
a small-signal tone (∆a22 = 0.01 V) at a frequency off-
set of 10 kHz from the desired 2 GHz, to give us the
quasi-linear value of S2222, which allows us to deter-
mine the output matching network. We make use of
S2222 to design the output matching network with the
well-known single, open-circuited stub technique. We
see in Table 1 that with the output matching network in
place, the value of |S2121| is only marginally increased
from 0.326 to 0.328. This is because the value of S2222
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Table 1. Simulated values for S1111 – S1161, S2111 – S2161, G2, and G2/G for each of the design stages of the diode frequency doubler

Diode w/ Diode w/ Diode w/
Diode w/ Diode w/ 1, 2 GHz 1, 2 GHz 1, 2, 4, 6

Quantity Diode only 1, 2 GHz 1, 2 GHz filters, filters, GHz filters
filters filters input & input & input &

input match output output output
match match opt. match opt.

|S1111| 0.464 0.569 9.4×10–2 8.7×10–2 6.0×10–3 2.1×10–4

|S1121| 0.170 1.3×10–5 8.8×10–6 8.0×10–6 9.5×10–6 9.9×10–6

|S1131| 3.2×10–2 4.9×10–3 4.0×10–3 1.4×10–2 1.1×10–2 2.2×10–2

|S1141| 2.4×10–2 3.5×10–2 3.7×10–2 2.4×10–2 2.8×10–2 5.1×10–2

|S1151| 1.7×10–2 1.1×10–2 1.1×10–2 1.9×10–3 2.3×10–3 2.5×10–3

|S1161| 3.9×10–3 1.0×10–6 1.0×10–6 9.7×10–7 1.1×10–6 2.0×10–6

|S2111| 0.536 3.3×10–5 4.0×10–5 4.0×10–5 4.0×10–5 5.0×10–5

|S2121| 0.170 0.268 0.326 0.328 0.331 0.332
|S2131| 3.2×10–2 3.5×10–7 3.3×10–7 1.5×10–6 1.1×10–6 1.7×10–7

|S2141| 2.4×10–2 3.5×10–2 4.5×10–2 4.1×10–2 4.0×10–2 1.4×10–6

|S2151| 1.7×10–2 7.6×10–7 1.1×10–6 2.5×10–6 2.3×10–6 3.0×10–6

|S2161| 3.9×10–3 2.0×10–2 2.5×10–2 2.6×10–2 2.9×10–2 2.7×10–6

G2 (dB) –14.16 –9.73 –9.69 –9.65 –9.60 –9.56
G2/G 0.091 0.978 0.976 0.979 0.978 0.999



is relatively low, which means the output is already
almost matched to 50 Ω. We also note that G2 increas-
es from –9.69 dB to –9.65 dB.

3.5 Diode With 1 GHz and 2 GHz Filters, Plus
Optimized Input and Output Matching

With the filters and matching networks in place, we
use the optimization feature of the simulator to mini-
mize S1111 by varying the lengths of the lines in the
input and output matching circuits. Doing this decreas-
es the value of |S1111| from 8.7 × 10–2 to 6.0 × 10–3 while
increasing the value of |S2121| from 0.328 to 0.331 and
G2 from –9.65 dB to –9.60 dB.

3.6 Diode With (1, 2, 4, and 6) GHz Filters, Plus
Optimized Input and Output Matching

From Table 1, we see that at the output port, |S2111|,
|S2131|, and |S2151| all have values less than or equal to
4.0 × 10–5, but |S2141| and |S2161| have noticeably higher
values (at least 2.9 × 10–2).

In order to clean up the output waveform, we add 4
GHz and 6 GHz filters, in the form of λ/4 open-circuit-
ed stubs, at the output. With these filters placed in the
circuit, we re-determine the proper input and output
matching conditions. After optimizing the circuit once
again, the value of |S2141| decreases from 4.0 × 10–2 to
1.4 × 10–6 and the value of |S2161| decreases from
2.9 × 10–2 to 2.7 × 10–6. The addition of these filters, in
turn, slightly increases |S2121| from 0.331 to 0.332 and
G2 from –9.60 dB to –9.56 dB. At this final design
stage, the overall power gain is nearly –9.56 dB since
the ratio G2/G = 0.999. The semi-empirical analysis of
[10] predicts a maximum gain of –9 dB. Figure 3 illus-
trates the final design of the single-diode resistive dou-
bler circuit. And Fig. 4 shows the time-domain plots of
a1 and b2 for the final design of the simulated 1 GHz
frequency-doubler circuit.

3.7 Summary of Sec. 3

We illustrated how nonlinear large-signal S-param-
eters can be used as a tool in the design process of a sin-
gle-diode 1 GHz frequency-doubler. Specifically, we
used S1111 to determine the input matching network,
S2222 to determine the output matching network, and
S11k1, S21k1 (for k = 1 to 6), and G2 to quantify the per-
formance of the circuit at each stage.

By the final stage of the design, we had created a
doubler with an overall power gain of –9.56 dB, not far
from the maximum possible predicted value of –9 dB.

4. Determining Nonlinear Large-Signal
S-Parameters from Artificial Neural
Network Models Trained With
Measurement Data

Although nonlinear large-signal S-parameters can
be easily determined for an existing model in a com-
mercial harmonic balance simulator by forcing all a’s
other than a11 to zero, they cannot be determined direct-
ly from measurements. With currently available
NVNAs, the nonlinear DUT, in conjunction with the
impedance mismatches and harmonics from the system
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Fig. 3. Final design of the single-diode resistive frequency doubler.
Electrical lengths shown are all at 1 GHz.

Fig. 4. Time-domain plots of a1 and b2 for the simulated 1 GHz frequency-doubler circuit.



make it impossible to set all a’s other than a11 (assum-
ing port 1 excitation) to zero. In order to overcome this
obstacle, we propose a method [12] that makes use of
multiple measurements of a DUT using a second source
with isolators, as shown in Fig. 5. This measurement
set-up is similar to that introduced by Verspecht et al.
[6-7] to generate “nonlinear scattering functions.” As a
side note, we compare and contrast the “nonlinear scat-
tering functions” with our definitions of nonlinear
large-signal scattering parameters in the Appendix.

4.1 Methodology

To illustrate our technique of generating nonlinear
large-signal S-parameters, let us consider the case
where a DUT is excited at port 1 by a single-tone sig-
nal at frequency f1 and signal level |a11|. Utilizing a sec-
ond source, we take multiple measurements of a non-
linear circuit for different values of amn [(m≠1)∧(n≠1)].
We then use these data to develop an artificial neural
network (ANN) model that maps values of a’s to b’s, as
shown in Fig. 6. Once the ANN model is trained and
verified, the nonlinear large-signal S-parameters are
obtained by interpolating b’s from the measured results
for nonzero values of amn [(m≠1)∧(n≠1)] to the desired
values for amn [(m≠1)∧(n≠1)] equal to zero, as shown in
Fig. 7. Alternatively, other conditions may be called for,
where amn≠0 depending on the desired application-spe-
cific figure of merit.

One popular type of ANN architecture, which is used
in our work, is a feed-forward, three-layer perceptron
structure (MLP3) consisting of an input layer, a hidden
layer, and an output layer [13]. The hidden layer allows
for complex models of input-output relationships.
ANNs learn relationships among sets of input-output

data that are characteristic of the device or system
under consideration. After the input vectors are present-
ed to the input neurons and output vectors are comput-
ed, the ANN outputs are compared to the desired out-
puts and errors are calculated. Error derivatives are
then calculated and summed for each weight until all of
the training sets have been presented to the network.
The error derivatives are used to update the weights for
the neurons, and training continues until the errors
become no greater than prescribed values. In our study,
we have utilized software developed by Zhang et al.
[14] to construct our ANN models.

To test our method of generating nonlinear large-sig-
nal S-parameters, we fabricated a wafer-level test cir-
cuit using a Schottky diode in a series configuration, as
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Fig. 5. Block diagram of a nonlinear vector network analyzer
equipped with a second source and isolators.

Fig. 6. An ANN model that maps real and imaginary values of a’s to
b’s for different real and imaginary values of amn [(m≠1)∧(n≠1)].

Fig. 7. An ANN model that interpolates b’s from the measured
results for nonzero values of amn [(m≠1)∧(n≠1)] to the desired values
for amn [(m≠1)∧(n≠1)] equal to zero. Outputs of the ANN model
yield values of S11k1.



shown in Fig. 8. The two-port diode circuit was fabri-
cated on an alumina substrate by bonding a beam-lead
diode package to the gold metalization layer with silver
epoxy. The diode was located in the middle of the
coplanar waveguide (CPW) transmission lines, with
short lines connecting the diode to probe pads at both
ports. We measured the test circuit on an NVNA using
an on-wafer VNA line-reflect-reflect-match (LRRM)
calibration, along with signal amplitude and phase cal-
ibrations. This process places the reference plane at the
tips of the wafer probes used to connect with the CPW
leads.

For all measurements, the first source, located at port
1, used a sine-wave excitation of frequency 900 MHz
and magnitude |a11|≈0.178 V (–5 dBm in a 50 Ω envi-
ronment) at the probe tips. The second source was con-
nected to port 2 and used a sine-wave excitation of fre-
quency 900 MHz and |a21|≈0.178 V. The diode was for-
ward-biased to +0.2 V through the probe tips. In order
to obtain the nonlinear large-signal S-parameters, S11k1

and S21k1, the excitation from source 1 was held con-
stant, while the phase of source 2 was randomly
changed for 500 different measurements that varied
slightly in magnitude. Figure 9 plots the resulting
measurements of a21 in the complex plane. The nonlin-
earities in the test circuit, along with impedance mis-
matches, created other input components at higher har-
monics, as shown in Figs. 10-13 for the second and
third harmonics (a12, a13, a12, and a13). These variations
in aij allowed us to create an ANN model that could be
used to interpolate b’s from the measured results for
nonzero values of amn [(m≠1)∧(n≠1)], as shown in Figs.
14 and 15 for b11 and b21, to the desired values for

amn [(m≠1)∧(n≠1)] equal to zero, or alternatively anoth-
er desired device condition.

4.2 Sensitivity Analysis of ANN Models

Data from the 500 measurements were used to devel-
op two ANN models, one for mapping values from the
first five harmonics of a1 and a2 (a11, a12, …, a15, a21, a22,
…, a25) to the first five harmonics of b1 (b11, b12, …, b15),
and the other for mapping values from the first five har-
monics of a1 and a2 to the first five harmonics of b2 (b21,
b22, …, b25). We performed a sensitivity analysis to
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Fig. 8. Schottky diode in a series configuration located in the mid-
dle of a CPW transmission line. (White area is metal.)

Fig. 9. Five hundred measurements of a21 in the complex plane with
the excitation from source 1 held constant and the output from source
2 set to random phases with constant amplitude.

Fig. 10. Five hundred measurements of a12 in the complex plane
with the excitation from source 1 held constant and the output from
source 2 set to random phases with constant amplitude.



determine how many training points, testing points, and
hidden neurons are required to adequately train the two
ANN models. Tables 2-4 summarize the results for the
first model, where we map values from the first five
harmonics of a1 and a2 to the first five harmonics of b1,
and Tables 5-7 summarize the results for the second
model, where we map values from the first five har-
monics of a1 and a2 to the first five harmonics of b2.

First, we varied the number of hidden neurons from
1 to 20. All other parameters were held constant.
Specifically, the 500 measurements points were divid-
ed into 250 training points and 250 testing points, and

we used the conjugate gradient method for training.
Table 2 lists the average testing errors and correlation
coefficients for the models that map a1 and a2 to b1, and
Table 5 lists the average testing errors and correlation
coefficients for the models that map a1 and a2 to b2.
Both mappings show similar trends. The average test-
ing errors decreased with increasing numbers of hidden
neurons until around 14 or 16, where the errors were
minimized. For more than 16 hidden neurons, the trend
reversed and the errors appeared to start increasing
again. Figure 16 plots the average testing errors as a
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Fig. 11. Five hundred measurements of a13 in the complex plane
with the excitation from source 1 held constant and the output from
source 2 set to random phases with constant amplitude.

Fig. 13. Five hundred measurements of a23 in the complex plane
with the excitation from source 1 held constant and the output from
source 2 set to random phases with constant amplitude.

Fig 12. Five hundred measurements of a22 in the complex plane with
the excitation from source 1 held constant and the output from source
2 set to random phases with constant amplitude.

Fig 14. Five hundred measurements of b11 in the complex plane with
the excitation from source 1 held constant and the output from source
2 set to random phases with constant amplitude.
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Fig. 15. Five hundred measurements of b21 in the complex plane
with the excitation from source 1 held constant and the output from
source 2 set to random phases with constant amplitude.

Fig. 16. Average testing errors as functions of the number of hidden
neurons for ANN models trained to map a1 and a2 to b1 and a1 and
a2 to b2. The models were developed using 250 training points and
verified using 250 testing points.

Table 2. Average testing errors and correlation coefficients as func-
tions of the number of hidden neurons for ANN models trained to
map values from the first five harmonics of a1 and a2 to the first five
harmonics of b1. All models were developed using 250 training
points and verified using 250 testing points

Hidden Average testing Correlation
neurons error (%) Coefficient

1 16.86 0.94814
2 10.84 0.98896
4 4.56 0.99715
6 1.66 0.99971
8 1.15 0.99989

10 1.08 0.99991
12 0.80 0.99996
14 0.72 0.99997
16 0.72 0.99997
18 0.84 0.99996
20 0.70 0.99997

Table 3. Average testing errors and correlation coefficients as func-
tions of the number of training points for ANN models trained to map
values from the first five harmonics of a1 and a2 to the first five har-
monics of b1. All models were developed using 14 hidden neurons
and verified using 250 testing points

Training Average testing Correlation
points error (%) Coefficient

5 20.10 0.96764
10 9.01 0.99556
25 3.64 0.99891
50 1.91 0.99979

125 0.95 0.99995
250 0.72 0.99997

Table 4. Average testing errors and correlation coefficients as func-
tions of the number of testing points for ANN models trained to map
values from the first five harmonics of a1 and a2 to the first five har-
monics of b1. All models were developed using 250 training points
and 14 hidden neurons

Testing Average testing Correlation
points error (%) Coefficient

5 0.80 0.99998
10 0.74 0.99997
25 0.68 0.99998
50 0.68 0.99998

125 0.72 0.99997
250 0.72 0.99997

Table 5. Average testing errors and correlation coefficients as func-
tions of the number of hidden neurons for ANN models trained to
map values from the first five harmonics of a1 and a2 to the first five
harmonics of b2. All models were developed using 250 training
points and verified using 250 testing points

Hidden Average testing Correlation
neurons error (%) Coefficient

1 17.88 0.74320
2 13.22 0.91161
4 6.48 0.96659
6 2.04 0.99893
8 1.43 0.99951

10 0.90 0.99985
12 0.82 0.99989
14 0.78 0.99989
16 0.73 0.99992
18 0.78 0.99988
20 0.99 0.99983



function of the number of hidden neurons for both map-
pings.

Next, we varied the number of training points from 5
to 250. All other parameters were held constant. The
number of hidden neurons was set to 14 since we found
that to be an ideal number from the previous analysis,
and 250 testing points were used for verification. Table
3 lists the average testing errors and correlation coeffi-
cients for the models that map a1 and a2 to b1, and Table
6 lists the average testing errors and correlation coeffi-
cients for the models that map a1 and a2 to b2. Once
again, both mappings showed similar trends. The aver-
age testing errors decreased for an increasing number
of training points. However, as more and more training
points were added, diminishing returns on the testing
errors were evident. Figure 17 plots the average testing
errors as a function of the number of training points for
both mappings.

Finally, we varied the number of testing points from
5 to 250. All other parameters were held constant. The
number of hidden neurons was once again set to 14, and
the same 250 training points were used for model
development. Table 4 lists the average testing errors

and correlation coefficients for the models that map a1

and a2 to b1, and Table 7 lists the average testing errors
and correlation coefficients for the models that map a1

and a2 to b2. Both mappings showed that the average
testing errors varied little with the number of testing
points. Figure 18 plots the average testing errors as a
function of the number of testing points for both map-
pings.

4.3 Results and Comparison for Sec. 4

Based on the results of our sensitivity analysis, we
decided to use 250 training points and 250 testing
points to train and verify the two ANN models. We
chose to use 14 hidden neurons for mapping values
from the first five harmonics of a1 and a2 to the first five
harmonics of b1 and 16 hidden neurons for mapping
values from the first five harmonics of a1 and a2 to the
first five harmonics of b2. The testing error was 0.72 %
for the b1 model and 0.73 % and for the b2 model, with
respective correlation coefficients of 0.99997 and
0.99992.
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Table 6. Average testing errors and correlation coefficients as func-
tions of the number of training points for ANN models trained to map
values from the first five harmonics of a1 and a2 to the first five har-
monics of b2. All models were developed using 14 hidden neurons
and verified using 250 testing points

Training Average testing Correlation
points error (%) Coefficient

5 27.08 0.50237
10 12.99 0.91962
25 3.72 0.99628
50 1.75 0.99940

125 1.09 0.99978
250 0.78 0.99989

Table 7. Average testing errors and correlation coefficients as func-
tions of the number of testing points for ANN models trained to map
values from the first five harmonics of a1 and a2 to the first five har-
monics of b2. All models were developed using 250 training points
and 14 hidden neurons

Testing Average testing Correlation
points error (%) Coefficient

5 0.87 0.99995
10 0.84 0.99993
25 0.81 0.99988
50 0.80 0.99989

125 0.81 0.99988
250 0.78 0.99989

Fig. 17. Average testing errors as functions of the number of train-
ing points for ANN models trained to map a1 and a2 to b1 and a1 and
a2 to b2. The models were developed using 14 hidden neurons and
verified using 250 testing points.

Fig. 18. Average testing errors as functions of the number of testing
points for ANN models trained to map a1 and a2 to b1 and a1 and a2
to b2. The models were developed using 14 hidden neurons and 250
training points.



After the ANN models were developed, the nonlin-
ear large-signal S-parameters, S11k1 and S21k1 (k = 1, 2,
…, 5), were obtained by interpolating b1k and b2k from
measured results for nonzero values of a12, a13, …, a15

and a21, a22, …, a25 to the desired values for a12, a13, …,
a15 and a21, a22, …, a25 equal to zero. Figure 19 shows
the interpolated value of b11 (= S1111 · a11) when a12, a13,
…, a15 and a21, a22, …, a25 were set equal to zero, and
Fig. 20 shows the interpolated value of b21 (= S2111 · a11)
when a12, a13, …, a15 and a21, a22, …, a25 were set equal
to zero.

We compared our results to a compact model provid-
ed by the manufacturer and simulated in commercial
harmonic-balance software to get an independent check
on our methodology. Our comparison was accom-
plished by providing the simulator with the identical
biasing conditions on the diode and a stimulus of the
same magnitude used in the measurements for a11 and
setting all other a’s to zero. Providing the simulated cir-
cuit with a11 of the same magnitude as the measurement
should give the same values of b1k and b2k as the inter-
polated values of b1k (= S11k1 · a11) and b2k (= S21k1 · a11)
determined by the ANN models when a12, a13, …, a15

and a21, a22, …, a25 are set equal to zero. Figures 19 and
20 show that the simulated values b11 and b21 agree with
those determined from the measurement-based ANN
models.

Quantitatively, the differences between the ANN and
equivalent-circuit models are shown in Table 8.

4.4 Summary of Sec. 4

We described a method of extracting nonlinear large-
signal S-parameters, using an NVNA equipped with
isolators and a second source. First, we showed how
multiple measurements of a nonlinear circuit could be
used to train artificial neural networks. Then, we
extracted the desired S-parameters by interpolating the
ANN models for all a’s equal to zero other than a11. We
checked our approach by comparing our results to a
compact model simulated in commercial harmonic-bal-
ance software, and showed that the two methods agree
well.

We also performed a sensitivity analysis on the ANN
networks, and discovered the following: (1) The aver-
age testing error decreases for an increasing number of
training points. However, as more and more training
points are added, diminishing returns on the testing
errors are evident. (2) As the number of hidden neurons
are increased, the average testing error decreases until
around 14 hidden neurons at which point more hidden
neurons have no benefit and can actually lead to
increases in testing error. (3) The number of testing
points does not drastically affect the testing error. In
fact, no more than 25 testing points are needed for the
models tested.

5. Overall Summary

In this paper, we introduced nonlinear large-signal
scattering parameters representing a new type of fre-
quency-domain mapping that relates incident and
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Fig. 19. The 250 measurements of b11 used for training (circles).
Values of S1111 · a11 were determined from the measurement-based
ANN model (square) and the harmonic balance simulation using a
compact model (triangle).

Fig. 20. The 250 measurements of b21 used for training (circles).
Values of S2111 · a11 were determined from the measurement-based
ANN model (square) and the harmonic balance simulation using a
compact model (triangle).



reflected signals. Unlike classical S-parameters, nonlin-
ear large-signal S-parameters take harmonic content
into account and depend on the signal magnitudes.
First, we presented a general form of nonlinear large-
signal S-parameters and showed that they reduce to
classic S-parameters in the absence of nonlinearities.
We also introduced nonlinear large-signal impedance
(Z) and admittance (Y) parameters, and presented
equations that relate the different representations. Next,
we considered two simplified cases of a one-port net-
work and a two-port network, each with a single-tone
excitation. For the one-port network, we showed that
the equation relating S and Z reduces to the same well-
known equation for the linear case, assuming no power
is transferred in the form of frequency down-conver-
sion. For the two-port case, we extracted input reflec-
tion coefficients and forward transmission coefficients,
which can be useful for designing circuits such as
amplifiers and frequency multipliers. In addition, we
derived a quasi-linear approximation of the output
reflection coefficient under normal operating condi-
tions. These three two-port parameters allow a design-
er to “see” application-specific engineering figures of
merit that are similar to what he or she is accustomed to
in the linear world.

Next, we illustrated how nonlinear large-signal S-
parameters can be used as a tool in the design process
of a single-diode 1 GHz frequency-doubler.
Specifically, we used S1111 to determine the input
matching network, S2222 to determine the output match-
ing network, and S11k1, S21k1 (for k = 1 to 6), and G2 to
quantify the performance of the circuit at each stage.
By the final stage of the design, we had created a dou-
bler with an overall power gain of –9.56 dB, a value not
far from the maximum possible predicted value of –9
dB.

For the case where a nonlinear model is not readily
available, we described a method of extracting nonlin-
ear large-signal S-parameters, using an NVNA
equipped with isolators and a second source. First, we
showed how multiple measurements of a nonlinear cir-

cuit could be used to train artificial neural networks.
Then, we extracted the desired S-parameters by inter-
polating the ANN models for all a’s equal to zero other
than a11. We checked our approach by comparing our
results to a compact model simulated in commercial
harmonic-balance software, and showed that the two
methods agree well. We also performed a sensitivity
analysis on the ANN networks, and discovered the fol-
lowing: (1) The average testing error decreases for an
increasing number of training points. However, as more
and more training points are added, diminishing returns
on the testing errors are evident. (2) As the number of
hidden neurons are increased, the average testing error
decreases until around 14 hidden neurons, at which
point more hidden neurons have no benefit and can
actually lead to increases in testing error. (3) The num-
ber of testing points does not drastically affect the test-
ing error. In fact, no more than 25 testing points are
needed for the models tested.

6. Appendix A. Comparing Nonlinear
Large-Signal S-Parameters With
Nonlinear Scattering Functions

Here, we compare the nonlinear large-signal S-
parameters, introduced in this paper, to another form of
nonlinear mapping, known as nonlinear scattering
functions, introduced by Verspecht [6-7].

For a two-port nonlinear device, excited by a single-
tone signal, and assuming all harmonic signals are rel-
atively small compared to the fundamental signals,
Verspecht defines nonlinear scattering functions as

(59)

where aij and bkp represent the wave variables propor-
tional to the incoming and outgoing waves, respective-
ly, and M refers to the number of harmonics being taken
into account. Fkp, Gkpij, and Hkpij are functions of the fun-
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Table 8. Differences between the measurement-based, ANN-modeled results and the compact model simulated in commercial harmonic-balance
software

Quantity Difference Difference Quantity Difference Difference
(%) (dBV) (%) (dBV)

S1111 3.38 –44.5 S2111 3.95 –43.2
S1121 1.23 –53.3 S2121 7.15 –38.0
S1131 3.29 –44.8 S2131 5.93 –39.6
S1141 0.40 –63.1 S2141 0.72 –57.9
S1151 1.67 –50.6 S2151 0.85 –56.5

1,2 1,2
2,..., 2,...,

Re( ) Im( ),kp kp kpij ij kpij ij
i i
j M j M

b F G a H a
= =
= =

= + +∑ ∑



damental components Re(a11), Re(a21), and Im(a21). The
imaginary component of a11 is omitted, with the
assumption that the wave variables are phase refer-
enced such that the phase of a11 is set to zero. Fkp, Gkpij,
and Hkpij are assumed complex constants for a given
bias and fundamental drive condition. Note that these
three terms do not depend upon the higher harmonic
signal levels. With the aij wave variables split into real
and imaginary components, Gkpij and Hkpij serve to map
aij circles centered at zero to bkp ellipses with variable
axes also centered at zero, as shown in Fig. 21. The Fkp

terms translate the ellipses about the complex plane.

For illustrative purposes, let us consider b11, taking
into account the first three harmonics. Doing this, Eq.
(59) reduces to

(60)

or

(61)

If we now consider the nonlinear large-signal S-
parameter representation for b11, once again assuming a
two-port network and taking into account the first three
harmonics, we have

(62)

or

(63)

Here, Sijkl are functions of all of the harmonics, not just
the fundamental terms. So for any change in any ajl, a
new set of Sijkl will need to be determined. Separating
the real and imaginary components of the a’s, we can
express eq. (63) as

(64)

Once again, the imaginary component of a11 is omitted,
with the phase reference such that the phase of a11 is set
to zero.

We can now equate the nonlinear large-signal S-
parameters of Eq. (64) to the nonlinear scattering func-
tions of Eq. (61), with the understanding that this is
only generally valid for the special case when the non-
linear large-signal S-parameters are constant for a
given bias and fundamental drive level, like Fkp, Gkpij,
and Hkpij are defined. Normally, however, the nonlinear
large-signal S-parameters depend upon the higher har-
monics as well as on the bias and fundamental drive
level. The implication of this special case will be dis-
cussed shortly, after Eqs. (61) and (64) are equated.
Equating the corresponding real and imaginary compo-
nents of the a wave variables in Eqs. (61) and (64)
gives

(65)
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Fig. 21. Gkpij and Hkpij serve to map aij circles centered at zero to bkp
ellipses with variable axes also centered at zero, neglecting Fkp for
illustrative purposes.
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Additionally,

(66)

(67)

(68)

and

(69)

Equations (66)-(69) imply

(70)

which means

(71)

Equation (71) satisfies the conditions of the Cauchy-
Riemann equations [15],

(72)

which implies bkp must be an analytic function of aij. A
complex-valued function is said to be analytic on an
open set W if it has a derivative at every point of W.
This is generally true only when bkp is a linear function
of aij. Thus, equating the nonlinear large-signal S-
parameters with the nonlinear scattering functions is
generally valid only in the small-signal, linear case.

As we mentioned earlier, Eqs. (65)-(70) are only
generally valid in the special case when the nonlinear
large-signal S-parameters are constant for a given bias
and fundamental drive level, like Fkp, Gkpij, and Hkpij are
defined. Since this is not generally true, the formula-
tions for nonlinear large-signal S-parameters and non-
linear scattering functions are not equivalent.

We can draw a few important conclusions, however,
after attempting to equate the two formulations. First, if
Gkpij and Hkpij are allowed to be functions of higher har-
monics, then only one of them, either Gkpij or Hkpij, or
equivalently Sijkl, is required since Eq. (70) shows that
they are not independent. Second, if the nonlinear
large-signal S-parameters are complex constants for a
given bias and fundamental drive level and are not

functions of the higher harmonics, the parameters have
the limitation that they cannot map circles into ellipses,
but rather can only map circles into circles, as shown in
Figure 22. This is because Sijkl is a single, complex con-
stant rather than a pair of independent complex con-
stants such as Gkpij and Hkpij. Thus, if Sijkl is not depend-
ent upon higher harmonics, it acts like a linear S-param-
eter.
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1112 1112 1112 1112; ,S SG j H= =
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Fig. 22. If Sijkl is a complex constant for a given bias and fundamen-
tal drive level, it has the limitation that it can only map circles into
circles.



We have shown above that the two formulations are
not equivalent. Nonlinear large-signal S-parameters
are more general than the nonlinear scattering func-
tions, which are useful in approximating a specific
class of nonlinearity in a more compact form.
Nonlinear large-signal S-parameters have the advan-
tage of being able to map circles into any arbitrary
shape, rather than being limited to ellipses.
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