
1. Introduction

To perform microtomography, the first question is
whether to use a coherent technique such as holoto-
mography [1], or an incoherent technique, which ties
the signals to mainstream tomography [2]. Amorphous
samples are usually regarded as having incoherent
interactions even with coherent beams [3], although
coherent techniques have been applied to amorphous
samples [4]. In biology, the samples are intrinsically
amorphous if the growth of ice crystals is avoided. The
now-standard technique of plunge freezing inhibits the
formation of ice crystals and allows the preparation of
amorphous samples. Tremendous progress has been
made [5].

If the sample is crystalline or contains a significant
proportion of crystallites, the incoherence must come
from elsewhere. A suitable detector may observe an
incoherent signal, as in the High-Angular Aperture

Dark Field (HAADF) method, which exploits the fact
that random motion of the nuclei in a crystal lead to an
incoherent signal at large scattering angles [6]. (In the
theoretical description, the Debye-Waller factors
become very small.) Recently, the complement of the
ideal HAADF signal has been used, under the name of
Incoherent Bright Field (IBF) imaging [7] with the
additional advantage that the signal is a monotonic
function of thickness whereas a practical HAADF
detector (with an inner diameter and an outer diameter)
has a single-peaked thickness-intensity relation.

In this paper, a different approach is taken. A propos-
al is made to scan the beam in a particular manner
while simultaneously recording an image to create a
signal that is effectively incoherent. I call this approach
“synthetic incoherence” to distinguish it from the more
common situation of incoherence induced by thermal
fluctuations of the source [8]. Using the definition of
coherence, it is shown that it is possible to reduce the
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coherence of a beam across a surface to a level which
is negligible tomographically. This is accomplished by
scanning an out-of-focus Gaussian beam across the
sample using a position-varying dwell time that itself
has a Gaussian distribution. Of course, an incoherent
beam cannot be strictly parallel, and this lack of paral-
lelism sets a limit for the thickness of the sample
assuming that the projection assumption [2] is required
for the reconstruction, i.e., assuming that the beam trav-
els in a straight line.

The definition of the mutual coherence function is
given in many sources, such as Spence [9];

(1)

where r1 and r2 are two positions in the optical field ψ,
t is a time, and T is a time difference. Only the equal
time case, i.e., T = 0, is of interest here [10]. The com-
plex degree of coherence is defined as the normalized
mutual coherence function

(2)

The normalized mutual coherence function is an inten-
sity-weighted average of the phase factor between two
illuminated points. When |γ12| << 1 the beam is incoher-
ent. Of course, γ12(r, r ) = 1, so the best one can do is to
have |γ12(r1, r2)| go to zero rapidly as |r1 – r2| grows.

2. Gaussian-Scanned Gaussian Beams

The Gaussian wave function solution to the paraxial
ray approximation for a beam traveling with its center
in the z direction is [11]

(3)

where the scaled dimensions X, Y, and Z are related to
the physical dimensions x, y, and z by

where r0 is a parameter characteristic of the beam waist
corresponding to two standard deviations of the inten-
sity, i.e., the square of the wave function and λ is the
wavelength. The beam waist may be given in terms of
the angle θ1 between the direction of maximum intensi-
ty and the angle at which the intensity has fallen by a
factor of e2

(7)

The time average of Eq. (2) may be performed by vary-
ing the beam conditions in a controlled fashion. This is
in contrast to the usual practice of performing the time
average of a source subject to statistical fluctuations.
An analytic solution is achieved in the following case.
The beam is scanned in the focal plane defined by z =
0. The beam center is given by (x0, y0). We restrict the
discussion to the plane of a surface of the sample
defined by the coordinate z, i.e., a plane whose normal
is parallel to the beam direction. The mutual coherence
function in the plane is given by

(8)

where w(X0, Y0) is a weighing factor which may be
taken as proportional to the dwell time. The normaliza-
tion

(9)

is imposed. Assume that w(X0, Y0) = w(X0)w(Y0), i.e., w
is a function of two variables factorized into two func-
tions of one variable (which happen to be the same).
The one-dimensional normalization

(10)

is imposed, which implies the two-dimensional normal-
ization of Eq. (9).

The function

(11)

has an integrand that may be expressed as
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(12)

The factor not dependent on X0 is

(13)

Specialize the weight to a Gaussian

(14)

where Σ = σ/r0 is the scaled standard deviation and σ is
the dimensional standard deviation. For this weight
function

(15)

where α = 2(1 + Z2)–1 + (2Σ2)–1. This integral may be
performed analytically using the result

(16)

So

The 1D normalization constant may be obtained by set-
ting X2 to X1 in Eq. (17), then returning to Eq. (17) and
setting X1 to X2, multiplying, and taking the square root.
The result is

(18)

The quotient simplifies to

(19)

Note that γ12(r1, r2) at z1 = z2 = z is simply Eq. (19)
times Eq. (19) under the substitution (X1, X2) → (Y1, Y2).
Let R2 = (X1 – X2)2 + (Y1 – Y2)2. Finally,

(20)

Note that |γ12| depends on the coordinates only through
the difference variable R. Eq. (20) obeys γ12 = 1 for R =
0, as required. If Σ → ∞, |γ12| = exp(–R2/2). This means
that if the beam is scanned uniformly over the entire
(infinite) focal plane, the range of the mutual coherence
is limited to about the focal spot size. (R is the distance
between any two points in the plane in units of the focal
spot size parameter r0.) On the other hand, if there is no
scanning, i.e., if Σ → 0, then |γ12| = 1 confirming that a
single Gaussian is perfectly coherent.

How narrow can the mutual coherence function be
made in practice? The intermediate cases may be para-
meterized by a constant c1 defined by c1

2 = (1 + Z2)/Σ2,
in which case the coherence scale length is
times the asymptotic limit. The case c2

1 = 12, for exam-
ple, is a reasonable compromise which achieves a mod-
erate scan range and for which the scale length of the
normalized mutual coherence function is twice its
asymptotic minimum. To simplify the analysis, assume
Z >> 1, which will be true for typical TEM illumina-
tion. Then we may approximate c1Σ = Z or

(21)

in the unscaled variables. Now zθ1 is the characteristic
scale length of the illuminated region, which is about
the sample size. Because we have a Gaussian weighting
function, we make a very small error by omitting the
tails. In practice, the scanning must take place over a
finite range, which we may call c2σ. The case c2 = 6
represents the omission of the tails past 3 standard devi-
ations; the total scanned length is √⎯3zθ1 in this case, i.e.,
roughly twice the sample size, which is a practical
result.

The situation imposes a limit for projection tomogra-
phy. A typical figure for θ1 is 3 mrad. Hence, the illumi-
nation strikes the sample by rays which are going in
different directions on this order. If the results are to be
applied in projection tomography, the number of pixels
must be below some constant or order 1 over θ1, which
means below some constant times 333 for the case of
θ1 = 3 mrad. In practice, tomographic reconstructions
are performed over 100 to 1000 voxels, so the require-
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ment is consistent with smaller reconstructions but not
larger ones.

3. Hollow-Cone Illumination

Hollow-cone illumination is frequently used to
enhance the incoherence of the beam [12]. Several
electron microscope vendors allow such a mode in
hardware. The analysis of hollow-cone illumination is
deferred to a future paper [13]; here, a numerical exam-
ple is provided. In hollow-cone illumination with a
Gaussian beam, the axis of the fundamental solution
given in Eq. (3) is tipped by the polar angle θ and
azimuthal angle φ. The polar angle θ is held constant
and the azimuthal angle φ is varied over its full range of
0 to 2π. An example of the resulting mutual coherence
function is given in Fig. 1 for a 300 keV electron with
θ = 3 mrad, hence a wavelength λ = 1.969 pm, and z =
1 mm. In the example, the focus of the beam remains at
the same point in space as the azimuthal angle φ is var-
ied. The situation of this example is characteristic: the
loss of confinement appears to have an envelope of

1/R—a far slower decay than a Gaussian beam scanned
with a Gaussian intensity as discussed in the previous
section and also as shown in the figure.

4. Conclusions

To achieve a practically incoherent beam for use in
electron tomography, a novel illumination scheme is
proposed that combines elements of STEM and TEM:
the sample is to be completely illuminated throughout
the observation while the beam is scanned. Moreover,
the scanning itself is more concentrated near the center
so that the intensity is given by a Gaussian with a stan-
dard deviation under user control. The new scheme is
compared to hollow-cone illumination and holds prom-
ise for removing the residual long-range correlations in
the latter case. The new scheme leads to no substantial
correlations for separations of 1 nm or more in an
example chosen with realistic parameters.

The practical implementation of the scheme requires
the experimentalists to be able to program the controls
of a STEM-TEM. Such a group would probably
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Fig. 1. The mutual coherence function vs. the distance between the two points in the plane R =
[(x2 – x1)

2 + (y2 – y1)
2]1/2/r0 for the Gaussian beam scanned with a Gaussian intensity profile (dot-

ted line) and hollow-cone illumination (solid line) with c1
2 = 12, θ = 3 mrad, λ = 1.969 pm, z = 1

mm. These parameters yield r0 = 209 pm. The parameters are defined in the text.



involve a collaboration with a vendor or the use of one
of the limited number of electron microscopes dedicat-
ed to research into the techniques of microscopy.
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